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Abstract. In this paper, we present foundations of the Socio-physical Model of Ac-
tivities (SOMA). SOMA represents both the physical as well as the social context
of everyday activities. Such tasks seem to be trivial for humans, however, they pose
severe problems for artificial agents. For starters, a natural language command re-
questing something will leave many pieces of information necessary for performing
the task unspecified. Humans can solve such problems fast as we reduce the search
space by recourse to prior knowledge such as a connected collection of plans that
describe how certain goals can be achieved at various levels of abstraction. Rather
than enumerating fine-grained physical contexts SOMA sets out to include socially
constructed knowledge about the functions of actions to achieve a variety of goals
or the roles objects can play in a given situation. As the human cognition system
is capable of generalizing experiences into abstract knowledge pieces applicable to
novel situations, we argue that both physical and social context need be modeled to
tackle these challenges in a general manner. The central contribution of this work,
therefore, lies in a comprehensive model connecting physical and social entities,
that enables flexibility of executions by the robotic agents via symbolic reasoning
with the model. This is, by and large, facilitated by the link between the physical
and social context in SOMA where relationships are established between occur-
rences and generalizations of them, which has been demonstrated in several use
cases in the domain of everyday activites that validate SOMA.
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1. Introduction

In spite of undoubtedly being ubiquitous, the domain of everyday activities poses con-
siderable challenges. Many people perform activities such as cooking or cleaning almost
every day. This includes to select and manipulate ingredients, use tools and devices, ar-
range the prepared dishes for serving and clean up afterwards – and do it all quick and

1This work was funded by the German Research Foundation (DFG) as part of Collaborative Research Center
(CRC) 1320 EASE – Everyday Activity Science and Engineering, University of Bremen (http://www.
ease-crc.org/), subprojects H2, P1 and R1.
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robust without recourse to an advanced computational theory. Further, the amount of in-
formation provided in a description of a task – such as a natural language command re-
questing its completion – is much less than the amount of information needed to perform
the task. This raises the question how humans are able to decide so quickly what to do
next, despite ambiguity and underspecification.

Lenat and Feigenbaum observe that “more knowledge implies less search” [1].
Knowledge of many possible plans, as well as knowledge of the world in general, seems
to be the secret of human performance. There is no algorithmic reason why tomatoes and
oregano go well together, or why a raw egg must be handled with care. The cook simply
has to know these things. Such knowledge of the world is taught, observed, and then
ingrained by practice. As Anderson observes, “an agent has a great deal of knowledge
[of everyday activities], which comes as a result of the activity being common” [2]. As
human beings, we acquire such knowledge naturally over the course of our lives. A lot
of what we learn, we learn by doing, or by watching others. This suggests that a robot
must have mechanisms to organize and interpret observations, either of its own behavior
or of other agents, into structures that are then amenable for other computational tasks.
To this end, the concept of narratively-enabled episodic memories (NEEMs) was intro-
duced [3,4]. NEEMs are comprehensive logs of raw sensor data, actuator control histo-
ries and perception events, all semantically annotated with information about what the
robot is doing and why using the terminology provided by SOMA.

The computational tasks that must be solved when acting in the physical world are
often very complex and beyond what is thought to be tractable. This, however, is only
the case when these problems are regarded in their full generality and not for restricted
versions of these problems. However, the knowledge representing such pragmatic solu-
tions goes beyond modeling physical events and requires models of the social context by
means of which the physical events can be realized and interpreted. For this, we employ
an existing upper-level ontology that we augment with general design patterns and spe-
cific modules that are pertinent for robot knowledge modeling. In this paper we provide
an overview, of this approach for robot knowledge modeling where all of our extensions
to the given foundational framework rely on the differentiation between the observable
physical domain and the conceptualized social interpretations thereof.

The overall goal of our research is to enable robotic agents to perform everyday
activities with similar robustness and flexibility as human agents do. Given this aim, we
must, in some sense, get the robot to know what humans know about the world, at least
as it pertains to everyday activities. This presents several challenges, beyond the scope
of what needs to be known to represent such intricate and extensive domain. There lies
the question of how to represent and structure this knowledge in order to realize a similar
robustness, flexibility and efficiency in performance. In addition, there are challenges
concerning the acquisition and learnability of the corresponding structures. In this paper,
we will focus on how this knowledge is represented. We will describe our employment
of an existing upper level ontology and the development of several ontology modules
aimed to address this general ontology design challenge. The resulting ontology is openly
available 2, and additional documentation is available online 3. As depicted in Figure 1,
our focus lies on representing both the physical context of realized everyday activities,
as well as interpretations thereof as the social context.

2https://github.com/ease-crc/soma
3https://ease-crc.github.io/soma/
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Figure 1. SOMA represents physical and social context, and supports robotic agents in interpreting observed
events, and realizing abstract descriptions.

2. Related Work

Ontology-based knowledge representation and reasoning in autonomous robot control
is a fairly extensive field of research with developments in both service and industrial
robotics. In the following, we will briefly discuss the most relevant works. A more de-
tailed discussion about how ontologies are used to support robot autonomy is provided
by Olivares et al. [5].

One example in the industrial robotics domain is the ROSETTA project [6,7]. Its ini-
tial scope was reconfiguration and adaptation of robot-based manufacturing cells, how-
ever, the authors have, since then, further developed their activity modeling for coping
with a wider range of industrial tasks. Other authors have focused on modeling indus-
trial task structure, part geometry features, or task teaching from examples [8,9,10,11].
Compared to the everyday activity domain, industrial tasks considered in above works
are more structured, and less demanding in terms of flexibility.

An approach to activity modeling in the service robotics domain is presented by
Tenorth and Beetz [12]. Foundationally, their modeling is based on a subset of the dis-
continued OpenCyc ontology [13] with much weaker axiomatization compared to our
foundational layer, and less inferential power and guidance during modeling. The scope
of their work is similar to ours as the authors also consider how activity knowledge can
be used to fill knowledge gaps in abstract instructions given to a robotic agent perform-
ing everyday activities. However, the scope of the work presented here is wider, as we
also consider how activity knowledge can be used for the interpretation of observations.
Our activity modeling is further more detailed in terms of activity structure as we also
consider the processes and states that occur during an activity. Another difference is that,
in their modeling, there is no distinction between physical and social context, but this
dichotomy is central in SOMA.

A more general approach to activity modeling for robotic agents is presented by the
IEEE-RAS working group ORA [14]. The group has the goal of defining a standard on-
tology for various sub-domains of robotics, including a model for object manipulation
tasks. It has defined a core ORA ontology [15], as well as additional modules for indus-
trial tasks such as kitting [16]. In terms of methodology, we differ in foundational as-
sumptions we assert, which has important consequences on the structure of our ontology,
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modeling workflow, and inferential power. In the case of ORA, the SUMO upper-level
ontology is used as foundational layer. However, the foundational layer of SUMO is
rather weakly axiomatized compared to other models. In particular central in SOMA is
the distinction between ground and descriptive concepts to represent physical and social
activity context, and that this distinction is tightly coupled with the foundational layer.

3. Overview

In this section, we will discuss the scope of SOMA (Section 3.1), its underlying founda-
tional commitments (Section 3.2), and how it is organized (Section 3.3).

3.1. Scope

The broad scope of our work is everyday object manipulation tasks in autonomous robot
control, and in particular the motion and force characteristics of objects. The research
question driving us is whether a single general control program can be written that can
generate adequate behavior in many different contexts: for different tasks, objects, and
environments. The employment of a general plan thus requires an abstract task and object
model, and a mechanism to apply this abstract knowledge in situational context.

A more fine-grained scope is defined through a set of competency questions that
are documented in the NEEM-Handbook [4]. Some examples related to the modeling
of affordances are “what can an object be used for?” and “what can an object be used
with?” (referring to the fact that affordances arise through the meeting of compatible
dispositions), as well as “what cannot be used to manifest an affordance?”. Thus, the
ontology offers ways to indicate what objects – given semantic knowledge about them –
provably can or provably cannot be used for some purpose, with undecided cases being
passed on to other mechanisms, e.g. simulation-based testing.

3.2. Foundational Commitments

SOMA is based on the DOLCE+DnS Ultralite (DUL) foundational framework [17]. This
decision is greatly motivated by their underlying ontological commitments. Firstly, DUL
is not a revisionary model, but seeks to express stands that shape human cognition. It
assumes a multiplicative approach. Our work, however, seeks to apply a reductionist ap-
proach where possible – rather than capturing, for example, the flexibility of our usage
of objects via multiple inheritance in a multiplicative manner, we commit to a reduced
ground classification and use a descriptive approach for handling this flexibility, as pro-
vided by the addition of the Descriptions and Situations extension of DUL [18]. For this
a primary branch of the ontology represents the ground physical model, e.g. objects and
actions, while a secondary branch represents the social model, e.g. roles and tasks. All
entities in the social branch are mind-dependent entities, i.e. they constitute social objects
that represent concepts about, or descriptions of ground elements.

Every axiomatization in the physical branch can, therefore, be regarded as express-
ing some physical context whereas axiomatizations in the descriptive social branch are
used to express social contexts. Already some dedicated relations and design patterns are
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Figure 2. The modular organization of SOMA. Each module defines concepts and relationships used to rep-
resent physical (orange) and social (purple) activity context.

provided that connect both branches4. For example, as detailed in Section 4.1, the DUL
relation classifies connects ground objects, e.g. a hammer, with the roles they can play,
while this does not represent classification in the logical sense, we find the distinction
between what an object is and what it can be used for very suitable for our approach.
Thus, we can state that a hammer can in some context be conceptualized as a murder
weapon, a paper weight or a door stopper. Nevertheless, neither its ground ontological
classification as a tool will change nor will hammers be subsumed as kinds of door stop-
pers, paper weights or weapons via multiple inheritance. Following a quick overview of
the central modules of SOMA, we will provide detailed examples of where and how our
commitments apply in Sections 4 and 5.

3.3. Module Overview

SOMA is organized in several modules that conceptualize different aspects of physical
and social activity context (Figure 2). The different modules correspond to different event
types (ACT, PROC, STATE), objects that participate in the activity (OBJ), and execution
context (EXEC). The scope of each of these modules is outlined below.

The scope of the OBJ module is the representation of physical objects, and their
qualities. The module includes two taxonomies used to classify objects: an object tax-
onomy in the grounded branch, and a role taxonomy in the descriptive branch. It further
includes a taxonomy of dispositions to represent the potential of using an object in some
way, and a design taxonomy used to categorize objects based on function, structure, and
aesthetics. This will be described in more detail in Section 4.

The scope of the ACT, PROC and STATE modules is the contextualization of actions,
processes and states. Actions are defined as events performed by an agent (physical con-
text), and structured by a plan that is executed by the agent (social context). Plans may

4http://ontologydesignpatterns.org
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Class : L i q u i d C o n t a i n m e n t D e s i g n
SubClassOf :

F u n c t i o n a l D e s i g n
i s D e s i g n O f only ( h a s D i s p o s i t i o n

some ( Con ta inmen t
and ( a f f o r d s T r i g g e r some

( c l a s s i f i e s only L i q u i d ) ) )

Class : Cup
SubClassOf :

D e s i g n e d C o n t a i n e r
i s D e s c r i b e d B y some

L i q u i d C o n t a i n m e n t D e s i g n

Figure 3. An example of how object classes are represented in SOMA.

further impose constrains on steps in the plan, and objects that may play a role (EXEC
module of SOMA). An action may cause processes to be started or stopped, and states
to be changed. Processes, such as motions, are defined as events considered in their evo-
lution. The difference between a state and a process is that, when considering time slices
of the event, for states, these time slices always have the same type as the state (states are
homeomeric), but for processes this is not the case. In SOMA, we define a taxonomy of
event types in the descriptive branch used to classify actions, and to further decompose
them into motion phases, state changes, and physical interactions caused by them. This
will be described in more detail in Section 5.

4. Object Representation in SOMA

One of the reasons that everyday activity is a hard problem is the immense amount of
variations an unrestricted environment may have, and the resulting potentials of interac-
tion for an agent. Each type of object needs to be handled differently depending on its
properties. However, object manipulation tasks are often defined independent of the type
of object that is manipulated. It is thus crucial to employ an abstract object model, and a
mechanism for applying abstract object knowledge to novel situations.

The main link between objects and actions in SOMA is that objects participate in
events in the physical branch, and that the social branch represents the interpretation of
their participation. This is elaborated in Section 4.1. Next, in Section 4.2, we will discuss
how objects are organized along their design. However, the agent might further need to
find suitable candidate objects to perform a task by reasoning about which objects have
the potential to be used in a certain way. We employ an object disposition model for
that purpose which is discussed in Section 4.3. An example object class is illustrated
in Figure 3. In the example, a Cup is defined as a type of DesignedContainer,
and thus inherits qualities through the class membership such as that it has a shape, and
that it can be used as a container. However, a cup is specifically designed to contain
liquid substances which can be captured by the notion of FunctionalDesign in
SOMA. The full axiomatization of the concept may contain several similar statements to
specify other aspects of object qualities such as that cups afford containment for other
object classes too, that they have a specific structural design, etc. Such a definition can
be exploited to formulate reasoning queries such as which known objects could be used
for a particular purpose, e.g. for storing water, or what the potential uses of an object are.
An example of such a reasoning query is provided in Section 6.1.
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4.1. Object Types

For the classification of objects we employ the Role pattern provided by the founda-
tional layer. Roles are Concepts and, as such, reside in the SocialObject branch
of DUL. For human agents the ascription of roles to entities comes very natural. He is a
student does not imply an isa or instanceof relation between some male individual and a
student class. It is rather meant that at this point of his life the individual plays the role
of a student, which, however, can and will change over time.

This role pattern is of paramount importance, especially in the modeling of affor-
dances discussed in Section 4.3. In the model presented herein, we import the roles that
have been established in the field of frame semantics [19]. The selectional restrictions
imposed by the classifies relation are used in a number of reasoning processes ranging
from natural language understanding to tool selection. As certain roles can only clas-
sify physical agents or specific types of designed artifacts these axiomatizations provide
substantial information about context dependent meaning of objects.

4.2. Object Designs

The organization of objects along a taxonomy is difficult as objects can be categorized
in many ways. A notion of design is useful to capture object categories corresponding to
structural, functional, or aesthetic patterns. Designs are in particular useful to conceptu-
alize refunctionalized entities, and to support an agent to hypothesize unknown functions
served by an entity. For example, a wooden pallet can be reused for the construction of
furniture such as sofa, bed etc. The categorization of objects along their design can be
employed in order to allow the use of more general plans, where, instead of object types,
the plan refers to structure, aesthetics, or function.

Within the scope of SOMA, the Design concept belongs to the social branch.
SOMA considers structural, functional and aesthetic aspects of design. A design de-
scribes classes of objects that host a common design-relevant quality. These qualities
are dispositional, geometrical, and aesthetic aspects of the object. This corresponds to
our design categorization into functional, structural, and aesthetic design. Each Design
concept defines restrictions on the corresponding quality type that needs to be fulfilled
by any object described by the design. These restrictions can also represent sufficient
conditions under which an object is thought to be described by the design which allows
the classification of entities given their design pattern can be detected.

In the scope of this work, we only consider functional aspects of objects. These are
represented using a model of dispositional qualities which is discussed next.

4.3. Object Dispositions

Objects are important to an agent because they allow it to perform, or prevent it from
performing, actions to achieve its goals. The notion of “affordance” was put forth by
Gibson as “. . . what it offers the animal, what it provides or furnishes, either for good or
ill” [20]. However, though evidently useful as a way to organize actionable knowledge
about the world [21], affordances proved very difficult to model ontologically. Several
approaches have been proposed, such as regarding affordances as qualities [22] or as
events [23]. Nonetheless, we think these approaches are not satisfactory. Affordances are
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relational, characterizing a potential interaction of several objects, and therefore should
not be treated as either a quality belonging to an object, nor as an event. We do recognize
that some qualitative aspects of objects contribute to affordances, however, which is why
we constructed our model around the interplay of Turvey’s notion of disposition [24] and
Gibson’s notion of affordance.

In SOMA, the Disposition concept is defined as an object quality that allows
an object to participate in events that realize an affordance. The Affordance con-
cept itself, however, is defined as the relational context holding between several objects
that play different roles such as being the “bearer”, “trigger”, or “background” of an
affordance. Our modeling allows us, via a mixture of DL and other reasoning mech-
anisms such as simulation, to answer several interesting questions such as what affor-
dances might an object provide in some combination with others, what objects might, or
probably would not, be able to provide a given affordance, what combinations of objects
would work towards providing an affordance etc. For more details on our disposition and
affordance model, we invite the reader to consult our previous work on this topic [25].

5. Event Representation in SOMA

The information gap between an instruction given to an embodied agent and the way it
has to move its body to successfully execute the instruction is often immense. Consider,
for example, a recipe for cooking noodles that contains an instruction to boil water in
a pot. It is simple to decompose this instruction into several steps with individual sub-
goals such as finding pot and tap, placing the pot underneath the tap, and filling the
pot with water. However, the more difficult problem is how the agent has to move its
body in each step such that the goal is achieved, and unwanted side-effects are avoided.
Little variations in motion behavior may have drastic consequences in tasks that require
delicate interaction. It is thus essential for agents performing actions in the physical world
to reason about how they should move to achieve their goals in an appropriate, flexible
and robust manner which is an unsolved problem for the general case.

SOMA attempts to support an agent facing this problem by equipping it with knowl-
edge about relationships between abstract descriptions and their realization. The support
is twofold. First, the agent may employ more general plans where informational gaps
are filled by reasoning over knowledge represented with SOMA. Second, the agent may
employ SOMA for understanding and generalizing observations. This means that agents
can interact safer in environments with incomplete information, and that they can learn
general patterns from specific situations.

An illustrative example of the representation of a pouring plan in OWL Manchester
Syntax is provided in Figure 4. The plan is represented as an ABox ontology, i.e. as a
collection of facts about the plan: what task it defines, and what steps it describes. Steps
are conceptualizations of the events that realize them. They specify the roles objects need
to play during the event, and may further specify ordering constraints using Allen’s rela-
tions such as that realizations of the step Pouring0 are started by realizations of the Ap-
proaching0 step. Finally, resources may need to be shared among different steps within a
plan, for example the source from which is poured (with role Source0) is the same entity
as the patient during the tilting motion (with role Patient0) which is captured through a
role binding in the plan definition.
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I n d i v i d u a l : P o u r i n g P l a n 0
Types : Plan , D e s c r i p t i o n
Fact s : d e f i n e s Pour ing 0 ,

h a s P h a s e Approach ing 0 ,
h a s P h a s e T i l t i n g 0

I n d i v i d u a l : P o u r i n g 0
Types : Task , Concept
Fact s : u s e s R o l e P a t i e n t 0 ,

u s e s R o l e Source 0 ,
u s e s R o l e D e s t i n a t i o n 0 ,
s t a r t e d B y Approach ing 0

I n d i v i d u a l : Approach ing 0
Types : Motion Type , Concept
Facts : u s e s R o l e D e s t i n a t i o n 1 ,

o v e r l a p s W i t h T i l t i n g 0
I n d i v i d u a l : T i l t i n g 0

Types : Motion Type , Concept
Facts : u s e s R o l e P a t i e n t 1

I n d i v i d u a l : B i n d i n g 1
Types : Role Binding ,

D e s c r i p t i o n
Facts : h a s B i n d i n g Source 0 ,

h a s B i n d i n g P a t i e n t 1

Figure 4. An example of how plans are represented in SOMA.

The reason that plans are represented as ABox ontologies in SOMA is that identity
constraints cannot be expressed as OWL-DL axioms, i.e. distinct steps of a plan with the
same type cannot be defined by different axioms. However, sequencing information can
be encoded in the ABox. This has the drawback that an OWL reasoner cannot recognize
the plan that was executed by an agent. In general, the machinery necessary to perform, or
recognize the execution of a task is outside the scope of OWL-DL. Nonetheless, we have
committed to encoding as many constraints on tasks as we can via OWL-DL axioms.

In the following, we will first introduce our hierarchical organization of tasks, pro-
cesses and states in Section 5.1, and, second, how they are decomposed into phases with
explicit goals and individual knowledge pre-conditions in Section 5.2. Finally, we will
discuss our modeling of force dynamical characteristics in Section 5.3.

5.1. Event Types

One of the most important demands on a cognitive system is to reason about actions;
colloquially speaking, an agent constantly asks itself what to do, and how to do it. This
however opens up another question, namely what exactly is the entity that the agent
represents – an actual event, or an interpretation of one.

As an example, consider this scenario: a robot moves toward a table carrying a plate.
Midway, its gripper releases, dropping the plate, which shatters against the floor. Perhaps
the robot had to transport the plate to the table, and it failed to do so; or perhaps it was
required to drop the plate as part of some material test, and the table was just there for
some other reason. Just by observation of the action, without other interpretive context
which includes knowledge of what the robot was told to do, there is no reliable way to
tell. The failed transport interpretation does seem more likely a priori, but only because
we have more often seen people tell robots to transport plates rather than break them; we
still make use of an expected interpretive context.

As a result, we do not define a taxonomy of action events in our ontology, but rather
of tasks that are used to conceptualize actions. For example, the Grasping concept is
defined as task in SOMA, and it is used for the classification of events that are interpreted
as an intentional grasping activity. This classification pattern between events and their
conceptualization is provided by the foundational layer of SOMA. However, within the
foundational layer, this pattern is only instantiated for actions and their conceptualiza-
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tion. In our modeling, motions of an agent and other processes, as well as state events are
used to structure an activity. Thus, we also need to represent processes and states in the
ground and the descriptive ontology. The same pattern applies: the concepts Process
and State are defined in the ground ontology, and their conceptualization in the de-
scriptive ontology, and a relationship between both branches is established through the
aforementioned classification pattern.

5.2. Event Phases

Actions in SOMA are composed of distinct phases. Each phase has its individual goal,
and requires a different movement strategy to be executed successfully. The phases cor-
respond to different stages of an object manipulation task, usually separated through
contact events. Flanagan et al. have pointed out the importance of contact events in ob-
ject manipulation tasks [26]. The authors have shown that contact events cause a distinct
pattern in sensory events, and that they can be used as sensorimotor control points for
aligning and comparing predictions with actual sensory events. Another justification is
that humans have shown to direct their gaze to contact points when they perform object
manipulation tasks, or when they observe another agent performing a task.

The structure of activities in SOMA is governed by a set of design patterns. At its
core, SOMA activity modeling builds on top of the basic plan ontology design pattern
that represents plans and their execution. The pattern defines that an execution is a situa-
tion that satisfies the description of the plan. However, the pattern is defined too specific
for the scope of this work, as we also want to provide descriptive context for states and
processes. Hence, we generalize this pattern such that it can be instantiated for actions,
states and processes: An Action is described in a Plan which is a description hav-
ing an explicit goal. A plan satisfies situations that include action sequences that match
the structure of the plan, such situations are called Plan Executions; a State is
described in a Configuration which includes constraints on regions of entities and
relationships between them. A configuration satisfies situations in which all constraints
of the configuration are satisfied; and a Process is described in a Process Flow
which is a description of the progression of the process. A process flow satisfies situa-
tions that include a process that progresses in the described way. Another aspect of ac-
tivity structure can be captured by SOMA in, what we call, execution contexts. These are
representations of how different phases of an activity constrain each other depending on
conditions encountered in the activity execution. In particular, we define the Binding
concept as identity constrain representing that a parameter or role grounding is the same
in different phases, however potentially being classified differently.

Ordering constraints are expressible in SOMA through a sequence pattern based on
Allen’s interval calculus [27]. Allen’s calculus defines thirteen relations between time
intervals including before, after, overlaps, and meets. This is useful to, on the one hand,
represent precedence of one phase strictly following the other, and, on the other hand, it
allows to cope with concurrency in the sequence. We apply this algebra to event types
that are defined within the descriptive context of a plan or process flow. However, reason-
ing about sequences is not well supported in OWL. Instead, we translate interval rela-
tions into a point graph to perform point-based reasoning [28]. Point graphs are directed
acyclic graphs where nodes are the endpoints of intervals, and an edge is added for each
axiom a < b where a,b are interval endpoints. A non empty path from an endpoint a
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to another endpoint b further implies that a < b through the transitivity of the relation.
Event relations can be inferred through relations between their endpoints. For example,
an interval i1 precedes another interval i2 iff e1 < s2 where s2 is the starting point of i2
and e1 is the ending point of i1. However, this only covers the pointisable subclass of the
algebra which means that e.g. disjunction axioms are not expressible.

Knowledge about the structure of activities can be employed by an agent in both
directions: for planning an activity, and for interpreting observed events. Planning can
be seen as a mapping from the descriptive to the grounded branch of SOMA, while
interpretation maps the other way. For embodied agents, planning goes beyond mere
decomposition of an activity into steps, the agent may further need to decide what objects
it should use, how it should move, with what speed, and how much force it should apply
when getting into contact with some object. SOMA may be employed by the agent to find
potential sequences of steps and motions to execute a task, to support finding potential
objects playing some role during the activity, and to constrain the values of parameters of
a task. Interpretation of events, on the other hand, is often possible through detection of
contact events, types of motions, and states. These can be used as tokens for an activity
parser that uses SOMA as a grammar, this will be described more in Section 6.

Knowledge Pre-Conditions. In order to execute a motion, an agent has to invoke one
of its control routines with a set of arguments. Higher-level routines may have a notion
of object, but at a lower-level all boils down to numbers such as with what effort the
robot moves, how fast, etc. SOMA allows to define constraints for both cases: for the
types of objects that can play a role during the action, and for the value of parameters.
This is done by using restrictions on what types of objects or regions can be classified by
some role or parameter. This information is used to reduce the search space for doing an
appropriate object or parameter selection (Section 4.3).

Goals. A goal is a description of a desired situation, and it is achieved only if the
situational context, after the execution has been finished, satisfies this description. SOMA
is more specific about what it means to execute an action successfully as it decomposes
it into processes and states where the goal of the task is that the progression of processes
evolves, and that state changes occur as described. Particularly important are the contact
states in object manipulation tasks, as they represent control points for the agent when
generating or observing behavior.

5.3. Event Force Characteristics

A contact state is an indicator for whether objects are touching each other or not. Patterns
of such states are useful for distinguishing between categories of activities. However,
different activities may cause the same pattern while their goal is different, or even the
opposite of each other. This is, for example, the case for pulling and holding. Both cause
the same pattern of an endeffector getting into contact with another object. But the force
characteristics are different: the goal of a pulling task is to overcome the inertial force of
the object to set it into motion, and the goal of a holding task is to neutralize any external
force that would set the object into motion. Another aspect is that an agent performing
such a task needs to decide how much force to apply. In order to make this decision it is
valuable to know what the intended force-related consequences are.

SOMA supports the representation of force characteristics using Talmy’s notion of
force dynamics [29]. Talmy distinguishes between two entities that participate in force
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dynamical processes: the Agonist, and the Antagonist. An agonist is the subject
of a force dynamical expression, while the antagonist is the opposing force in the ex-
pression. Each expression has an intrinsic force tendency either to set the agonist into
motion, or to keep it resting. Whether the tendency can be realized or not depends on
which of the two entities is the stronger entity.

6. Evaluation of SOMA

SOMA was developed to provide robots with the capability to answer a set of compe-
tency questions about everyday activities. Thus, we evaluate SOMA by validating that
these questions can be answered (in Section 6.1). Due to space limits, we will only elab-
orate on selected examples here. The full range of competency questions is documented
in the NEEM-Handbook [4]. Furthermore, the relevance of these competency questions
can be demonstrated through applications of SOMA and their evaluation. A practical
employment of SOMA is demonstrated in the EASE Robot Household marathon [30].
Here, we will provide an overview of SOMA applications in prior work to verify its use
in the application domain of autonomous robotics (in Section 6.2).

In version 1.1.0, SOMA contains 1330 logical axioms, 416 classes, 203 object prop-
erties, and 38 data properties. Its expressivity is SROIQ(D). More metrics are listed
on the SOMA webpage 5. They are automatically computed when SOMA is deployed
through a web service based on OntoMetrics 6.

6.1. Reasoning with SOMA

Being written in DL, SOMA can be processed with standard DL reasoners such as
HermiT. Because reasoning with the ontology is important during its use, our process of
updating the ontology includes a reasoning step as well, also performed with HermiT,
to verify that updates do not insert unsatisfiable concepts or empty properties. In more
detail, every commit to the SOMA repository triggers subsumption and classification
queries, and the discovery of concepts or properties equivalent to Nothing triggers a
warning. This eases maintenance and scaling up of SOMA while keeping it consistent.

We will next exemplify how the ontology can be reasoned with “at runtime”, during
some activity of a robot. Knowledge in SOMA covers, among others, aspects such as
dispositions and affordances of objects. A question a robot might have is, what object
in its environment could be used for a particular purpose, e.g. to contain some liquid.
To this end, the robot will query the ontology by first defining a new “query” concept,
formulated in Listing 1 and then ask which of the objects it knows about can be proven
to belong to this query concept via a subsumption query – objects that are individuals of
subconcepts of the query concept can be used.

Sometimes, no known objects might be provably appropriate for a purpose. In such
cases, one might try some other methods, such as testing in simulation, but such methods
are themselves costly and so a filtering of candidates via reasoning is useful. In this exam-
ple, the robot might ask, “what cannot be used to contain a liquid”. This is also achieved
with the help of the “query” concept illustrated in Listing 1, but in a different manner. For

5https://ease-crc.github.io/soma/
6https://ontometrics.informatik.uni-rostock.de

https://ease-crc.github.io/soma/
https://ontometrics.informatik.uni-rostock.de
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a named concept C present in SOMA, that is a subconcept of DesignedArtifact, do
a satisfiability query for the intersection of C with the query concept. If this intersection
is provably empty, objects that are instances of C need not be tested for the affordance.

Listing 1: A query concept to find objects which can contain liquids

Class : W i t h A f f o r d a n c e C o n t a i n m e n t L i q u i d
EquivalentTo :

D e s i g n e d A r t i f a c t and ( h a s D i s p o s i t i o n some
( Con ta inmen t and ( a f f o r d s T r i g g e r some ( c l a s s i f i e s only L i q u i d ) ) ) )

OWL-DL was designed for the representation of encyclopedic knowledge, and has
limited scope for domains such as dynamical characteristics. This concerns, for exam-
ple, reasoning about the temporal ordering of steps that execute a task which we handle
through point-based reasoning where SOMA is enriched with definitions of temporal
relations. Another example is simulation-based reasoning for affordance testing [31,32].
Thus, SOMA is used as a common model in a hybrid reasoning framework.

6.2. Applications of SOMA

The applicability of SOMA in the domain of autonomous robotics has been demonstrated
in several scientific publications which we will briefly discuss in this section.

Grounding task parameters often requires predictive models which can be trained
over instances of successful performance. Such experiential knowledge is in particular
useful to learn context-dependent plan specializations. That is, how the parameters of
the plan can be constrained within the scope of some context to reduce the search space
of parameter selection during plan execution. The learning problem is then defined with
respect to a contextual pattern, and experiential samples are only considered when their
contextualization matches this pattern. We have demonstrated this capability in another
work where a robot learns to execute a general fetch and place plan based on experience
acquired through the execution of more constrained tasks [33].

Learning mechanisms often require large amounts of training data. One modality for
acquisition is observation of other agents. We have developed an activity parser that is
used to find possible interpretations for observed patterns of occurrences such as that ob-
jects get into contact with each other, or that the state of an object changed. The grammar
used by the parser is a library of plans represented using SOMA. In prior work, we have
provided more details about how the social context in SOMA can be grounded in data
structures of a game engine [34]. The game engine implements an immersive virtual re-
ality environment with photo realistic rendering and state of the art physics engine. Users
perform object manipulation tasks while interactions, states, and motions are monitored,
and used as tokens by the activity parser.

Our modeling of tasks also helps to disambiguate vague natural language commands
a robot may receive. SOMA allows us to model how tasks relate to and depend on one
another, and thus define execution contexts containing not just information about a task’s
parametrization, but also information about what other tasks it should enable. We use
such execution contexts to set up simulation scenarios in which to test task executions
and thus select among several interpretations of a vague natural language command [31].
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7. Conclusion

In this paper, we have proposed SOMA, a novel activity ontology for robotic agents that
combines several established ontology design patterns with models of human cognition.
The SOMA ontology has been designed to cover a set of competency questions in order
to support robot decision making during action execution or observation. This is done by
representing physical and social context of an activity, and by establishing relationships
between both contextualizations. These representations are used by robotic agents to fill
knowledge gaps in general plans applicable to many situations, and to generate context-
specific behavior. They are further used for the representation of observed events, and for
reasoning about how they are to be interpreted. We believe that such an expressive activ-
ity representation is an important vehicle for transforming robots from just performing a
task to mastering the corresponding activity.
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