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Abstract— In this paper we present KNOWROB2, a second
generation knowledge representation and reasoning framework
for robotic agents. KNOWROB2 is an extension and partial
redesign of KNOWROB, currently one of the most advanced
knowledge processing systems for robots that has enabled them
to successfully perform complex manipulation tasks such as
making pizza, conducting chemical experiments, and setting
tables. The knowledge base appears to be a conventional first-
order time interval logic knowledge base, but it exists to a large
part only virtually: many logical expressions are constructed on
demand from data structures of the control program, computed
through robotics algorithms including ones for motion planning
and solving inverse kinematics problems, and log data stored in
noSQL databases. Novel features and extensions of KNOWROB2
substantially increase the capabilities of robotic agents of
acquiring open-ended manipulation skills and competence,
reasoning about how to perform manipulation actions more
realistically, and acquiring commonsense knowledge.

I. INTRODUCTION

Robotic agents that are to accomplish goal-directed object
manipulation tasks need a lot of commonsense and intuitive
physics knowledge. This knowledge is needed to bridge the
gap between underdetermined instructions, such as “pick up
the cup”, and the detailed motion specifications needed to
accomplish the action. Many objects have to be grasped and
held differently depending on their form, weight, properties
(breakable, hot, soft, or wet), the task that is to be performed
with them, and the location where they are to be picked
up from. Avoiding unwanted side effects might require the
robot to use a precision grasp of the handle and keep the cup
upright. The appropriate grasp and motion parameterizations
depend on background knowledge. Namely that the handle
is the object part for holding the cup and that it should be
held upright to avoid spilling.

KNOWROB2 is an extension and partial redesign of
KNOWROB [1] that provides the knowledge representation
and reasoning mechanisms needed to make informed deci-
sions about how to parameterize motions in order to accom-
plish manipulation tasks. The extensions and new capabil-
ities include highly detailed symbolic/subsymbolic models
of environments and robot experiences, visual reasoning,
and simulation-based reasoning. Aspects of redesign include
the provision of a interface layer that unifies very hetero-
geneous representations through a uniform entity-centered
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Fig. 1: Software architecture of KNOWROB2.

logic-based knowledge query and retrieval language. In ad-
dition, KNOWROB2 is designed to leverage concepts and
results from motor cognition and robot control to extend
AI reasoning into the motion level and make the robot’s
reasoning mechanisms more powerful. The new capabilities
and functionalities are facilitated through employing modern
information processing technologies such as physics simu-
lation and rendering mechanisms of game engines, big data
recording, storage, and retrieval technologies, and machine
learning. The use the above leading-edge information tech-
nology enables robotic agents to acquire generalized com-
monsense and intuitive physics knowledge needed for the
mastery of human-scale manipulation tasks from experience
and observation and to make AI reasoning actionable within
the perception-action loops of robots.

The purpose of this paper is to give an overview on
(•) which additional cognitive capabilities a knowledge pro-
cessing framework should provide to enable the mastery
of human-scale manipulation tasks, (•) how KNOWROB2
integrates these capabilities to provide a fast, robust, and
uniform query answering capability for robot control sys-
tems that returns results that can be executed by the robot
execution system, and (•) how these cognitive capabilities are
realized through leading-edge technology for photo-realistic
rendering and simulation based reasoning.



Among others, KNOWROB2 provides the following cogni-
tive capabilities that go beyond what other robot knowledge
processing systems offer. KNOWROB2 is be able to

• “reason with its eyes and hands”. It is able to imagine
a state of the environment at a level of detail that is
almost photo-realistic. It is further able to imagine the
execution of manipulation actions at the level of motions
and force-dynamic interactions of objects, and translate
the observed state evolution into a first-order time logic
representation that can be used for semantic information
retrieval and reasoning. A similar functionality is available
for mentally looking at imagined scenes. This capability
is currently realized through an additional preliminary
knowledge system that is implemented on top of a photo-
realistic and physics simulation-based game engine as an
additional knowledge system.

• reason about motion parameters such that certain physical
effects are achieved or avoided. The goal is to specify
actions by their desired physical effects and the motion
control system infers the appropriate motion parameteri-
zation and adaptation automatically. This is accomplished
by learning generalized models of how physical effects of
actions vary depending on the motion parameterization.

• learn generalized commonsense and intuitive physics
knowledge from experience that is applicable to novel
situations and tasks. The information processing mecha-
nisms that realize this capability are inspired by the human
memory system and the role that episodic memories play in
the acquisition of generalized knowledge [2]. KNOWROB2
employs techniques for efficiently recording, storing, main-
taining, and semantically indexing huge sensor and motion
data streams and data intensive machine learning and data
analytics methods to accomplish this.

KNOWROB2 is partly available via the knowledge service
OPENEASE [3], a platform through which robots and re-
searchers can upload, access, and analyse episodic memories
of robots performing manipulation tasks. The service is
publicly accessible at www.openease.org.

We evaluate KNOWROB2 by demonstrating its compre-
hensive capability in query answering. We will give examples
of queries that are essential for decision making and motion
parameterization in robot manipulation that go beyond what
can be answered in representations based on the state transi-
tion model of robot action. Additional queries are available
via OPENEASE1.

The remainder of this paper is organized as follows.
The next section gives an overview of the KNOWROB2
framework and describes its architecture. The subsequent
sections then detail the respective reasoning components of
the framework. Finally, we describe the logic-based interface
language, and how robots can learn from episodic memories.

1https://data.open-ease.org/

II. OVERVIEW

A robot would use KNOWROB2 as a query answering
system just like today’s information agents, such as the
iPhone’s Siri. The main difference is that KNOWROB2 runs
within the perception action loop of robotic agents: many
queries are connected to the tasks that the agent is executing
and refer to images that it captures, motions that it performs,
etc. The queries are primary asked to decide on how to
manipulate objects or parameterize motions. For example,
for a table clearing task typical queries are: where are the
cups and plates, where to stand to pick up an object, how to
reach for the object, how to position the grippers, how much
force to apply, how to move the arm to pick it up, how to
hold it, etc. To answer such detailed queries KNOWROB2 is
tightly connected to the control program, reuses some of its
algorithms, and shares data structures with it.

A typical inference is depicted in Figure 2. This example
is taken from an episode in which a robotic agent grasps a
cup to pour out the remains. The robot asks the query how to
pick up the cup to pour out its remains. The query, stated in
Prolog, works as follows: it retrieves a pouring action Tsk,
that has a sub-action to grasp the source container, which
is called Spt-Tsk. It then queries the pregrasp PG and grasp
pose G and the grasp force of the respective reaching motion
and displays these motion parameters.

e n t i t y ( Tsk , [ an , a c t i o n ,
[ type , p o u r i n g ] ,
[ sou rce , Cup ] ,
[ sub−a c t i o n , [ an , a c t i o n ,

[ type , g r a s p i n g ] ,
[ name , Spt−Tsk ] ,
[ o b j e c t−a c t e d−on , Cup ] ,
[ p r e g r a s p−pose , PG ] ,
[ g rasp−pose , G] ,
[ g rasp−f o r c e , Force ] ] ] ] ) ,

e n t i t y ( Cup , [ an , o b j e c t ,
[ type , cup ] ] ) ,

show ( [ PG , G, Force ] ) .

Tsk = ’ P o u r i n g 0 ’ ,
Spt−Tsk = ’ G r a s p i n g 6 ’ ,
PG = ’ Pose 788 ’ ,
G = ’ Pose 685 ’ ,
Fo rce = 50Nm.

Query ?

Answer!
Fig. 2: A typical query in KNOWROB2 on the left, and the inferred
answer shown in OPENEASE on the right side.

There are several aspects that should be discussed about
the query. First, the query needs to access data and param-
eterize data structures and function calls in the perception
action loop of the control system; it therefore works in the
embodiment of the robot system. Second, the level of detail
of the knowledge processing system is much higher than the
one typically used in artificial intelligence which considers
actions as black boxes and therefore cannot reason about
motion parameters and the relation between motion parame-
ters and the effects of actions. A consequence of lowering the
abstraction level at which knowledge is represented is a much
easier grounding of symbolic expressions. It is easy to see
that the information queried, namely the pregrasp and grasp
poses, is properly grounded with respect to the perceived
scene.

www.openease.org
https://data.open-ease.org/


The architecture of KNOWROB2 itself is depicted in
Figure 1. A unique feature of it is the central position of
the symbolic representation of the ontology, even below
the data structures of the control system. This enables the
programmer to semantically annotate and lets the control
system automatically compute the semantic meaning of data
structures. Section III gives further details about representa-
tions employed by KNOWROB2.

Around the ontology is the hybrid reasoning shell. Many
of the data structures, representations, parameters of compu-
tational processes have associated axiomatizations that de-
clare their meaning with respect to the ontology, allowing the
robot control system to use this data as if it were a symbolic
knowledge base. The hybrid reasoning shell uses multiple
methods for knowledge implementation. Key components
are the data structures of the control system and robotics
algorithms such as inverse kinematics and motion planning,
which, for example, allow the programmer to specify that
the robot should believe an object to be reachable if the
motion planner can find a collision free path to the position
of the object. The hybrid reasoning kernel is discussed in
more detail in Section IV.

Another key and novel component of the hybrid rea-
soning shell is the inner world knowledge base [4]. It is
a detailed, and photo-realistic reconstruction of the robot’s
environment in a game engine with physics simulation and
vision capabilities, and adds powerful reasoning methods to
the KNOWROB2 knowledge processing framework. First, the
robot can geometrically reason about a scene by virtually
looking at it using the vision capability provided by the game
engine, and predict the effects of actions through semantic
annotations of force dynamic events monitored in its physics
simulation. As Winston [5] would formulate it, it allows the
robot to reason with its eyes and hands.

The subsequent interface layer exposes reasoning capa-
bilities of control mechanisms integrated below it through
a logic-based language. The language exploits control-level
data structures for ad-hoc symbol grounding, and ontologies
for unifying these heterogeneous representations. To appli-
cations above the interface layer, the hybrid reasoning shell
appears to be a first-order logic knowledge base, but it is
largely constructed on demand from data structures of the
control program, and computed through robotics algorithms.
This is discussed in Section V.

Finally, the interface shell provides the question answer-
ing, perception interface, experience acquisition, and knowl-
edge learning interface of KNOWROB2 that can exploit the
rich set of hybrid reasoning mechanisms integrated below
the interface layer.

To sum up, the hybrid reasoning shell provided by
KNOWROB2, which unifies robot control reasoning mech-
anisms with the inner world knowledge base, experience
acquisition and other perception and learning mechanisms,
makes KNOWROB2 a competent knowledge service for
personal robots and, also, unique compared to available
knowledge representation frameworks for the same purpose
such as [1], [6], and [7].

III. ONTOLOGIES AND AXIOMATIZATIONS

Action representations used in AI and autonomous agents
research typically represent the agent control system at a
coarse level of detail, at which actions are described by
blackbox models. Instead, KNOWROB2 puts ontologies at
the core of the control system so that data structures, even
those used at lower levels, can be semantically annotated
with their meaning according to the core ontologies.

In order to gain a better intuition of the advantages of
putting symbolic ontologies at the core of robot control
systems consider, for example, the concept of a dynamically
changing robot pose. In KNOWROB2 we represent this in the
form of the holds predicate holds(pose(r,〈x,y,o〉), ti), which
asserts that the robot believes its pose with respect to the
origin of the environment map at time instant ti is 〈x,y,o〉.
This relation is defined in the KNOWROB2 ontology. Typi-
cally, the robot control system would estimate the pose of the
robot over time using a Bayesian filter — such as a particle
filter for robot self localization. In this case, the robot’s
belief about where it is is implemented in the probability
distribution over the possible robot poses in the environment
as estimated through the filter. Then, one can specify the
pose where the robot believes to be (holds(pose(r,〈x,y,o〉),
ti)) as the pose 〈x,y,o〉 with the maximal probability. By
specifying rules that ground concepts of the ontology into
the data structures of the control systems, substantial parts
of the data structures can be turned into a virtual knowledge
base where the relevant relations are computed from the data
structures on demand.

KNOWROB2 employs multiple ontologies. The core ontol-
ogy is the KNOWROB ontology [1], which defines (•) robots,
their body parts, how the parts are connected, and sensing
and action capabilities, (•) objects, their parts and function-
ality, and constellations and configurations thereof, (•) robot
tasks, actions, activities, and behaviors, and (•) situational
context and environment. The ontology together with addi-
tional axioms and rules provides background knowledge that
is relevant for manipulation tasks. For example, it states that
a cup is a vessel that consists of a hollow cylinder and a
handle, and that it can be used for drinking, mixing, and
pouring substances. It also provides knowledge about the
material they are made of, namely metal, wood, porcelain or
plastic. A key role of the ontology is also the grounding of
the ontology concepts in different components of the control
system: the perception, reasoning, and control components.

Finally, KNOWROB2 facilitates the use of additional spe-
cial purpose ontologies for robots to gain more application
domain information. Outdoor robots, for example, can use
ontologies developed for geo-information systems, such as
the ontologies of OpenStreetMap tags. Robotic assistants for
department stores can use product data from web stores such
as GermanDeli 2, etc.

2http://www.germandeli.com

http://www.germandeli.com


IV. HYBRID REASONING KERNEL

The hybrid reasoning kernel of KNOWROB2 contains a
set of knowledge bases that includes
• the inner world knowledge base: a world model composed

of CAD and mesh models of objects positioned at accurate
6D poses, and equipped with a physics simulation,

• the virtual knowledge base: computed on demand from the
data structures of the control system,

• the logic knowledge base: abstracted symbolic sensor and
action data, with logical axioms and inference mecha-
nisms, and

• the episodic memories knowledge base: experiences of the
robotic agent.
In general, the knowledge content of these knowledge

bases may be redundant or inconsistent. Rather than deriving
the correct answer, KNOWROB2 computes multiple hypothe-
ses, which are then checked for plausibility and consistency,
like the way the Watson system operates.

To this end, KNOWROB2 employs hybrid reasoning meth-
ods. We will sketch the ones that are particular powerful for
reasoning about robot manipulation tasks: reasoning based
on the inner world model (e.g., simulation-based reasoning),
and motion control reasoning.

A. Narrative-enabled Episodic Memories

When somebody talks about the deciding goal in the last
soccer world championship many of us can “replay” the
episode in our “mind’s eye”. The memory mechanism that
allows us to recall these very detailed pieces of information
from abstract descriptions is our episodic memory. Episodic
memory is powerful because it allows us to remember special
experiences we had. It can also serve as a “repository” from
which we learn general knowledge.

KNOWROB2 integrates episodic memories deeply into the
knowledge acquisition, representation, and processing sys-
tem. Whenever a robotic agent performs, observes, prospects,
and reads about an activity, it creates an episodic memory. An
episodic memory is best understood as a video that the agent
makes of the ongoing activity coupled with a very detailed
story about the actions, motions, their purposes, effects, the
behavior they generate, the images that are captured, etc.

We term the episodic memories created by our system
narrative-enabled episodic memories (NEEMs). A NEEM
consists of the NEEM experience and the NEEM narrative.
The NEEM experience is a detailed, low-level, time-indexed
recording of a certain episode. The experience contains
records of poses, percepts, control signals, etc. These can be
used to replay an episode in detail. NEEM experiences are
linked to NEEM narratives, which are stories that provide
more abstract, symbolic descriptions of what is happening
in an episode. These narratives contain information regarding
the tasks, the context, intended goals, observed effects, etc.

An example of the information contained in a NEEM is
illustrated in Figure 3. In this episode, a robot cleared a
dinner table that had a bowl and a spoon on top. The depicted
timeline has marks for some time instants at which the robot

t1 t2 t3 t4

occurs ( ev123 , t 2 )
even t−t y p e ( ev123 , d e t e c t )
p e r c e p t i o n−t a s k ( ev123 , ob j246 )
e n t i t y ( obj246 , [ an , o b j e c t , . . . ] )
p e r c e p t i o n− r e s u l t ( ev123 , ob j345 )
e n t i t y ( obj345 , [ an , o b j e c t , . . . ] )
c a p t u r e d−image ( ev123 , img456 )
image−r e g i o n ( obj345 , reg567 )

Assertions !
Fig. 3: Illustration of a narrative-enabled episodic memory.

e n t i t y ( Tsk , [ an , a c t i o n ,
[ type , p i c k i n g u p a n o b j e c t ] ,
[ o b j e c t a c t e d o n , [ an , o b j e c t

[ type , cup ] ] ] ,
[ b o d y p a r t s u s e d , BodyPar t ]

] ) ,
occurs ( Tsk , [ T s k S t r t , TskEnd ] ) ,
holds ( pose (R , Pose ) , T s k S t r t ) ,
show ( t r a j e c t o r y ( BodyPar t ) ,

[ T s k S t r t , TskEnd ] ) .

Tsk = ’ P i c k i n g 3 ’ ,
BodyPar t = ’ Lef tArm pr2 ’ ,
T s k S t r t = ’ 1 4 : 3 3 . 1 4 0 ’ ,
TskEnd = ’ 1 4 : 3 8 . 3 2 3 ’ ,
Pose = ’ Pose 56 ’ .

Query ?

Answer!
Fig. 4: Example query evaluated on a NEEM on the left, and the
respective answer on the right.

started to perform an action. Images that were captured by
the robot at these time instants are shown on the top row of
the figure. The poses of the robot are shown below of the
timeline. The robot navigates to the table at t1 to perceive
objects on top of it at t2, to establish a pregrasp pose at t3, and
to grasp the spoon at t4. Some of the corresponding assertions
in the knowledge base are shown at the bottom of the figure.
These assertions represent, for example, that at t2 an event
ev123 occurred, that this event was a detection event with
the corresponding perception task obj246, that the perceived
object is described by ob j345, and that this object corresponds
to the image region reg567 of the captured image img456.
The symbolic assertions are linked to data structures of the
control program to enrich the high-level activity description
with low-level information such as concrete motions.

NEEMs allow to ask queries about which actions the robot
performed, when, how, and why they were performed, if they
were successful, what the robot saw, and what the robot
believed when the action was performed. The robot may
ask queries such as: how did I pick up a cup, which body
part did I use, and how was my pose when picking it up.
These questions map to a query such as the one depicted in
Figure 4. Here it searches for NEEMs where T sk is a task
where the robot picked up a cup with its body part BodyPart,
that occurred during the time interval [T skStrt,T skEnd], and
at which start time the pose of the robot is described by
Pose. KNOWROB2 gives the answer to that query in terms
of symbol bindings for the free variables in the query, and
visually by rendering the scene based on beliefs of the robot.



B. Inner World Knowledge Base

One of the knowledge bases employed by KNOWROB2 is
based on the so called inner world model. The basic idea is to
create a photo-realistic copy of the environment in which the
robotic agent is located, composed of symbolically annotated
3D mesh models coupled with a physics engine. While this
knowledge base provides all the capabilities of a symbolic
knowledge base, it also allows the robotic agent to look at the
environment as it believes it to be with its “mind’s eye” and
mentally execute a manipulation action in order to predict
the effects of its parametrization.

Fig. 5: Inner world model of a kitchen environment.

Figure 5 shows the inner world knowledge base of a
kitchen environment that the robot is operating in. We can see
that the inner world knowledge base is highly detailed and
realistic. The objects in the environment are composed of ob-
ject parts that have accurate CAD models. Thus, a cupboard
consists of a door with a handle and shelves. The cupboard
is also equipped with an articulation model that allows the
robotic agent to simulate opening the cupboard. Objects such
as the cereal box are modelled photo-realistically and stand
on the shelf. When pushed, the box would tip over and
depending on the exerted force fall down to the floor.

The entities in the inner world knowledge base have sym-
bolic names with assertions that represent their properties.
By asserting that an entity in the inner world knowledge
base is an entity of the category cupboard that is defined
in the KNOWROB2 ontology, the robotic agent can infer
background knowledge about the entity. For example it can
infer that dirty dishes belong in the dishwasher, perishable
items into the fridge, and so on.

KNOWROB2 uses the inner world knowledge base for
simulation-based reasoning to make inferences that would
be difficult to achieve with purely symbolic knowledge bases
(see section IV-C). For example, it can form expectations of
how the interior of the fridge will look or whether inserting
a certain item might cause another to tilt.

There are two kinds of inner world knowledge bases: first,
the one that mirrors the current belief state of the agent about
the state of the environment and the ongoing activities and
second, ones that are created on demand in order to explore
how activities would proceed in hypothetical situations and
episodes. The belief state is represented using KNOWROB2
terminology such that it can be trivially mirrored in the inner
world knowledge base.

C. Simulation-based Reasoning

An important aspect of performing manipulation actions
competently is envisioning their consequences in the inner
world to forestall unwanted side effects. This often requires
the careful adjustment in the continuous, high-dimensional
space of motion parameters including body part poses, ve-
locities, and forces. The only plausible mechanism we see
for predicting the motion effects is physical simulation.

Humans have been shown to simulate their actions and
its resulting effects, without highly accurate and detailed
simulations [8]. For example, when pouring a substance from
a container, the human does often not know the viscosity
of the substance, or when cutting not the stiffness of the
material to be cut. Simulation is a valuable information
source despite these limitations because it predicts possible
outcomes, which the agent can use to monitor execution and
identify the right model at execution time [9].

Simulation-based reasoning is one of the reasoning strate-
gies employed by KNOWROB2. It uses representations on
a low abstraction level – poses, perceptions, meshes – to
predict outcomes of motion parameterizations and (high-
level) plans. These predictions can be used to reason about
the correct course of action. Simulation-based reasoning
has the benefit of avoiding the frame problem [10] and
capturing nuances of physical behavior that would be difficult
to formalize in logic-like reasoning systems. Moreover, the
knowledge underlying the reasoning – particles, collisions,
gravity, etc. – is much more generic and less likely to contain
gaps than rules or knowledge we might input manually.

Sensory data, control commands, and higher level events
such as contacts between objects, state changes of objects,
grasping events etc. are continuously recorded during simu-
lation and asserted to the episodic memories knowledge base
of KNOWROB2. Since we want to extract meaningful infor-
mation from these records, we have to abstract away from
meshes and poses to for example states and objects. In other
words, we create symbolic entities linked to subsymbolic
information via procedural attachments. Being in a virtual
environment we have access to ground truth data during the
whole simulation.

When clearing a table, for example, the robot may have
to pour some remaining liquid from a cup into the sink
before putting it into the dishwasher, and wants to reason
about the tilting angle, and the altitude such that the liquid
is not spilled to much in the sink. Such goals are hard to
capture in a pure logics formalism, but the fluid dynamics can
be monitored in simulation and exposed to the logics-based
interface language of KNOWROB2 via NEEMs acquired from
the data. The NEEMs can be queried just like the NEEMs
from real-world executions:
?− e n t i t y ( Act , [ an , a c t i o n , [ type , p o u r i n g ] ,

[ s u c c e s s , t rue ] , [ t i l t i n g a n g l e , T i l t ] ,
[ a l t i t u d e , A l t i t u d e ] , [ s p i l l e d a m o u n t , S p i l l ] ,
[ o b j e c t a c t e d o n , [ an , o b j e c t , [ type , cup ] ] ] ,
[ t a r g e t l o c a t i o n , [ an , o b j e c t , [ type , cup ] ] ] ] ) .

The query is used to retrieve successful pouring episodes
during which some liquid was poured from a cup into another



cup. It also retrieves motion parameters (i.e., tilting angle
and altitude), and the amount of spilled liquid according to
the monitored state of the physics engine. Note that we use
simulation both for learning and reasoning. Learning pertains
to learning (common-sense) knowledge from NEEMs (some
of which collected in simulation) and will be described in
more detail in Section VI.

Speed is a challenge for simulation-based reasoning. In
order to support online decision making, the processes have
to be completed within a short timeframe. It can be reason-
ably expected that the fast development in processor/GPU
power and physics engines will help us to significantly
improve this aspect. Moreover, by limiting the time over
which simulations are run compared to the current state of
the real world, e.g. limiting how far one “looks ahead”,
we can limit how much time simulation-based reasoning
requires. Speed is not as critical for learning from simulated
episodes, on the other hand. The robot can “dream” overnight
while physically inactive by running simulations of activities
with varying control parameters.

D. Motion Control Reasoning

KNOWROB2 does not follow the classical approach to
reasoning about actions. That is, it does not abstract away
the particularities of how actions are executed. Instead, it
combines action representations with explicit and modular
motion descriptions. This tight coupling of motion control
and action representations and reasoning is similar in spirit
to the research on combined task and motion planning [11].
In fact, this tight coupling is a key enabler of competent
robot manipulation capabilities.

To establish some intuition of the problem of competent
robot manipulation behavior, let us revisit our running exam-
ple of a robot pouring from a cup. When the robot intends
to pick up the cup filled with milk, it has to hold the cup
upright to avoid spillage. Holding the cup upright is a motion
constraint, while the insight that a tilted cup may lead to
spillage is a symbolic conclusion about a causal relationship.
Similarly, the robot might want to grasp the cup close to the
center of mass to have better control when pouring. From
these examples it should be intuitively clear that reasoning
about motion control and action execution have to be tightly
coupled to achieve competence in manipulation.

By not abstracting away how actions are executed,
KNOWROB2 avoids the difficult problem of determining
an appropriate level of action abstraction. This is indeed a
hard problem because what is appropriate depends on the
particular task at hand and the physical capabilities of the
robot. The problems that arise when tackling manipulation
actions with abstract and discrete representations have been
well studied in the context of the egg cracking problem [12].
It was shown that the number of assertions and rules needed
to state for simple manipulation problems explodes and that
the representations are complex and not very intuitive. Often
the problems are caused because the continuous behavior
and events that are caused by manipulation actions have to
be discretized differently for different subproblems.

State of the art methods for robot motion control, on the
other hand, only generate the sophisticated motions required
to perform manipulation actions. However, these methods
lack the representational means and background knowledge
to ensure competent action execution. Typically, motions are
modelled using complex mathematical task function [13].
In a nutshell, for robot motion control, the execution of a
manipulation action is that of finding a continuous motion
trajectory that optimizes the task function subject to further
mathematical constraints. This implies that the control sys-
tem has no notion that it is performing a pouring action
and even worse it does not know how changing the motion
parameterization will change the outcome of an action.

In the remainder of this subsection, let us briefly describe
and reference two recent extensions of KNOWROB2 that
present mechanisms to reasoning about robot motion control.

Tenorth et al. [14] present some of the mechanisms to
reason about motions. Using the example of pouring liquids,
the knowledge base represents and reasons about constraint-
based motion descriptions using generic motion templates.
Additionally, the inner knowledge base infers the correct
placement of control features and frames on the objects
involved in the action using CAD-model reasoning.

Fang et al. [15] learned models that relate the execution
context of pouring tasks to the appropriate constraint-based
motion descriptions. To this end, the authors encoded human
pouring demonstrations acquired in an interactive physics-
based simulation as episodic memories, and applied Random
Forest Regression to extract the generalized knowledge re-
quired to context-sensitively parametrize pouring motions.

V. LOGIC-BASED LANGUAGE

The representations and mechanisms provided by the
hybrid reasoning kernel are very heterogeneous. Also, the ac-
complishment of more complex reasoning tasks requires the
combination of different inference mechanisms. In addition,
the representation of knowledge through large unstructured
sets of relations or predicates lacks structure and modularity,
which makes knowledge engineering difficult.

To facilitate the use of heterogeneous representations and
reasoning mechanisms, KNOWROB2 provides a uniform
logic interface to the hybrid reasoning kernel. This inter-
face language presents the hybrid reasoning kernel to the
programmer as if it were a purely symbolic knowledge base.

The interface language takes an object-oriented view, in
which everything is represented as if it were entities retriev-
able by providing partial descriptions for them (i.e., the entity
predicate). Entities that can be described include objects,
their parts, and articulation models, environments composed
of objects, software components, actions, and events.

Particularly important for competent robot manipulation
are the events that occur and the state properties that hold
at certain stages of action execution (predicates occurs and
holds). The state of the world, and the internal state of the
robot continuously changes, and therefore the outcome of
all rules attached to this information. The robot may need
to plan the next action, for example, during clearing a table,



and infers that the remains in the cup need to be poured into
the sink, that it has to carry the cup to the sink, and that
it has to tilt it and wait a few seconds until the remains
were poured into the sink. Temporal predicates express
facts about occurrence of events using event logics, and
changes in the world state using time dependent relations.
The fact that some substance was poured at 11am, for
example, can be written as occurs(pouring0,11am), or the
fact that the cup is empty afterwards can be written as:
holds(empty(cup0, true), 11am).

The task-level control, perception, and motion control
components of a robotic agent need to reason about entities
with partial descriptions that detail different aspects. This is
facilitated by the KNOWROB2 entity description language
that allows to partially describe entities in terms of their
symbolic, or subsymbolic properties. The description of a
cup, from the perspective of the perception component, can
be represented in the entity description language as:

e n t i t y ( Cup , [ an , o b j e c t , [ type , cup ] ,
[ shape , c y l i n d e r ] , [ c o l o r , o r an ge ] ] )

While the controller-centric representation of the same cup
could be written as:

e n t i t y ( Cup , [ an , o b j e c t , [ type , cup ] ,
[ p r o p e r p h y s i c a l p a r t s , [ an , o b j e c t ,

[ type , h a n d l e ] , [ g rasp−pose , G−pose ] ] ] ] )

The interface language is comparable to other query lan-
guages for symbolic knowledge bases such as SPARQL [16]
and nRQL [17]. These query languages are quite powerful
but lack the integration of sophisticated reasoning meth-
ods such as the simulation-based reasoning employed by
KNOWROB2.

Many relevant inferences require to combine information
of different type, and from different sources. Before grasping
a cup, for example, the robot may ask can I grasp the cup
from my current position, and needs to infer possible grasping
points using the perceived object pose, read the position
of some joints, and infer the ability to grasp using inverse
kinematics. High volume data such as sensor data can not be
directly represented in a symbolic knowledge base. Instead,
special purpose procedures must be used for querying the
data (e.g., reading a sensor value). KNOWROB2 allows to
attach procedures to so called computable relations [1] that
transparently integrate non symbolic data into the reason-
ing process, and make queries appear to users as if they
are working with a symbolic knowledge base. A red cup,
for example, can be represented by the entity description
[an,ob ject, [type,cup], [color,red]], and its existence can be
inferred using the entity predicate which internally takes into
consideration the robot’s internal data structures such as the
object hypotheses generated by the perception system.

VI. LEARNING FROM EPISODIC MEMORIES

The NEEMs collected in the episodic memories knowledge
base are used to learn general knowledge. While classical
data-centric learning approaches can achieve successful re-
sults for some cases (e.g., [18]), the robots are still far from
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Fig. 6: Robot base poses from episodes during which the robot
succeeded (indicated by green dots), and failed (indicated by red
dots) to grasp a cup from the counter top of a sink.

executing human-scale manipulation tasks. One possible
approach to achieve this level is to boost existing approaches
with symbolic-level structured knowledge so that robots can
formalize learning problems by themselves and generate
training datasets from the available NEEMs.

If the robot perceives a cup on the table while cleaning
the table, it can retrieve a collection of positive NEEMs for
picking up cups using the following query:
?− f i n d a l l ( Act , e n t i t y ( Act , [ an , a c t i o n ,

[ type , g r a s p i n g s o m e t h i n g ] ,
[ o b j e c t a c t e d o n , [ an , o b j e c t , [ type , cup ] ] ]

] ) , Acts ) .

Then, using the following query, it gets features from these
episodes:
?− f i n d a l l ( RelPose , ( member ( Act , Ac ts ) ,

e n t i t y ( Act , [ an , a c t i o n , [ o b j e c t a c t e d o n , Obj ] ] ) ,
occurs ( Act , [ Begin , ] ) ,
holds ( pose ( Robot , RobotPose ) , Begin ) ,
holds ( pose ( Obj , CupPose ) , Begin ) ,
t r a n s f o r m r e l a t i v e ( RobotPose , CupPose , Re lPose ) ) ,
F e a t u r e s ) .

The features in the above query consist the pose information
of the robot w.r.t. the cup at the beginning of the grasp.

Given this dataset, the robot can learn in which limited
region the grasp is likely to succeed (depicted in Figure 6).
To this end, KNOWROB2 offers an interface to the Weka
Machine Learning framework [19] and thus to many learning
learning algortihms such as Gaussian Mixture Models. This
interface can be used to apply standard methods for filtering
irrelevant features, training and saving classifiers and regres-
sors, and predicting outcomes given new data.

Having machine learning techniques integrated in a robotic
knowledge processing system offers capabilities such as what
kind of data is needed for a learning domain problem, how to
integrate different datasets together, and how to benchmark
the learning results. For instance, it is not always the case
that the latest generated trajectory is better than the previous
ones in an iterative learning case. Using KNOWROB2, robots
can reason about such circumstances and instead of using
the latest generated trajectory, use the less-time-taking one.
For example, by having some trajectories learned from
simulation available, robots can reason and benchmark on
them with respect to factors such as durations and lengths,
then execute the one that fits the most in the current situation.



VII. RELATED WORK

Knowledge processing for robots has been a research
topic for decades. The Shakey robot [20] already had an
internal representation of its environment. Since then, robots
advanced to perform more realistic tasks that rely on complex
scene representations and a massive increase in the knowl-
edge about actions and objects. In the AI community, many
methods have been developed that focus on individual in-
ference problems. Allen’s time interval algebra [21] focuses
on reasoning about time intervals, and languages such as
PDDL [22] are designed to reason about plans and goals.
Robot centered approaches, such as [23], often lack support
for relevant domains such as temporal reasoning, or have
incomplete representations of spatial and object information.
Encyclopedic knowledge bases, such as Cyc [24], often lack
the necessary depth in representing relevant concepts such as
the representation of manipulation activities. Other authors
tried to automate the acquisition of encyclopedic knowledge
by extracting information from web resources [25], and
thereby providing knowledge in specialized areas. In the
robotics community, much of the research has focused on
modelling uncertainty using probabilistic models [26] that
are usually tailored to a single modality such as perception,
or localization, and lack clear semantics. More sophisticated
models combine spatial with grounded semantic representa-
tions [27], or geometric and conceptual spatial representa-
tions with planning and learning techniques [28].

VIII. CONCLUSION

In this paper we have given an overview of the knowl-
edge processing framework KNOWROB2. Clearly, the per-
formance of the framework should be measured in terms of
the reasoning tasks that it can perform and the knowledge it
can acquire. We have reported on several reasoning tasks that
KNOWROB2 can accomplish and that set it apart from other
robot knowledge processing systems. These tasks include the
simulation-based reasoning, visual reasoning using the inner
world model, as well as learning from episodic memories.
Taken together these mechanisms can greatly improve the
competence of robotic agents in accomplishing manipulation
tasks. Many of these capabilities can be tried out using the
web-based knowledge service OPENEASE.
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