Envisioning the Effects of Robot Manipulation Actions using Physics-based Simulations

Lars Kunzea, Michael Beetzb

aIntelligent Robotics Laboratory, School of Computer Science, University of Birmingham, United Kingdom
bInstitute for Artificial Intelligence \& TZI (The Centre for Computing Technologies), University of Bremen, Germany

Abstract

Autonomous robots that are to perform complex everyday tasks such as making pancakes have to understand how the effects of an action depend on the way the action is executed. Within Artificial Intelligence, classical planning reasons about whether actions are executable, but makes the assumption that the actions will succeed (with some probability). In this work, we have designed, implemented and analyzed a framework that allows us to envision the physical effects of robot manipulation actions. The envisioning is achieved by translating a qualitative physics problem into a parameterized simulation problem, performing a detailed physics-based simulation of a robot plan, logging the state evolution into appropriate data structures and then translating these sub-symbolic data structures into interval-based first-order symbolic, qualitative representations, called timelines. The result of the envisioning is a set of detailed narratives represented by timelines which are then used to infer answers to qualitative reasoning problems. By envisioning the outcome of actions before committing to them, a robot is able to reason about physical phenomena and can therefore prevent itself from ending up in unwanted situations. Using this approach, robots can perform manipulation tasks more efficiently, robustly, and flexibly, and they can even successfully accomplish previously unknown variations of tasks.

Keywords: Envisioning, Naive Physics, Everyday Robot Manipulation

1. Introduction

In recent years, we have seen substantial progress towards personal robot assistants which are able to perform everyday household chores such as cleaning a room1 or preparing a meal (Beetz et al., 2011). However, designing and building robots that can autonomously perform an open-ended set of manipulation tasks in human environments remains an unsolved problem and poses many challenges to the field (Kemp et al., 2007). One of the challenges is enabling robots to learn how to perform novel tasks from natural instructions, for example interpreting natural language instructions (Tenorth et al., 2010b) or analyzing observations of a human performing the task (Beetz et al., 2010a). Based on such information, a robot has to understand the nature of the task, that is, it has to reason about how the physical effects of a manipulation action depend on the way the action is executed. In particular, to perform the task itself, the robot has to understand how its own manipulation actions produce physical effects.

Within Artificial Intelligence (AI), the problem of reasoning about actions is often considered in the area of classical planning. In contrast to the question of how the effects of an action depend on how it is executed, the question that classical planning typically considers is what effects are caused by an action? However, in the context of robotics, the problem has to be approached from a different direction, because how an action is executed has a major influence on its consequences. Furthermore, classical planning approaches are inadequate for everyday manipulation for two reasons: open-ended tasks makes classical planning intractable; and robot control programs cannot be adequately represented by sequences of actions (McDermott, 1992). Logical axiomatizations for representing and reasoning about actions and their effects have also been developed for problems such as cracking an egg (Lifschitz, 1998; Morgenstern, 2001). However, when temporal projections are made on the basis of logical formalizations, the physical details of

1http://personalrobotics.stanford.edu
the manipulation actions are abstracted away, and variants of the problem could only be handled by extending the underlying theory. To enable robots to reason about the future, they have to predict the effects of their actions before committing to them. This requires them to handle an enormous amount of interdependent temporal data (Dean, 1989).

Evidence from cognitive psychology and neuroscience shows that humans perform their actions based on the expected consequences of their actions (Haaebroek and Hommel, 2009; Ingram et al., 2010). One of the important factors that determine how a human performs an action is end-state comfort (Weigelt et al., 2006). Mirror neurons allow humans to perform mental simulations and thereby enable us to recognize and understand the outcome of actions (Oztop et al., 2006). The simulation theory of cognition is mainly based on three components: that behavior can be simulated; that perception can be simulated; and, finally, that real and simulated actions can provoke perceptual simulations of their most likely consequences (Hesslow, 2012). Thus, the question what would happen if I perform this action? can be answered by simulating the action and looking at the simulated perceptual outcome. Subsequently, the perceptual outcome can serve as stimulus for new simulated behavior. Evidence show that even high-level cognitive processes are grounded in bodily-based simulations (Svensson and Ziemke, 1999).

Within this line of research we are interested in how robots can predict the possible outcomes of both single actions, like reaching for an object, and complex tasks, through mental simulations. We illustrate this with the following concrete example scenario.

1.1. Example Scenario: Making Pancakes

In this article, we use making pancakes as a running example to illustrate what physical knowledge robots need to competently accomplish everyday manipulation tasks. As mentioned above, understanding everyday physical phenomena, that is representing and reasoning about them, is an endeavor in the field of Artificial Intelligence which dates at least back to the work of Hayes (1979). More recently, there has been work on physical reasoning problems such as “cracking an egg” (Morgenstern, 2001) which is listed on the common sense problem page. In analogy to the problems listed on that page, we have formulated the task of making pancakes as follows:

“A robot pours ready-made pancake mix onto a preheated pancake maker. Properly performed, the mix is poured into the center of the pancake maker (without spilling) where it forms a round shape. The robot lets it cook until the underside of the pancake is golden brown and its edges are dry. Then, the robot carefully pushes a spatula under the pancake, lifts the spatula with the pancake on top, and quickly turns its wrist to put the pancake upside down back onto the pancake maker. The robot waits for the other side of the pancake to cook fully. Finally, it uses the spatula to move the pancake onto an upturned dinner plate.”

By following this challenge problem, a robot can acquire some basic knowledge about the task. However, it does not know what could happen when the robot itself performs the task in a certain way. This knowledge is obtained by what we call here envisioning. In this work, envisioning denotes the ability of the robot to predict and to reason about the possible outcomes of its parametrized actions. We will also use the term envision whenever we refer to the envisioning process. The meaning of the term envisioning is functionally similar to de Kleer (1977). However, the underlying principles are different as will be explained in this article.

For a simplification of the task, we consider the natural language instructions a human may use to describe the process of making a pancake:

2Common Sense Problem Page: http://ww-formal.stanford.edu/leora/commonsense
• Pour the pancake mix into a frying pan.
• Flip the pancake around.
• Place the pancake onto a plate.

Humans can understand such instructions easily, and can immediately follow them. However, for robots these instructions are highly underspecified and therefore they need other means to acquire the relevant knowledge which enables them to perform the task. Figure 1 highlights some questions a robot has to answer in order to accomplish the task successfully.

![Figure 1: What should I do? And how should I do it?](image)

To understand what makes this particular task interesting, let us first consider the task-related objects, second the actions a robot has to carry out to perform the task, and finally the physical effects that could result from the actions.

The task-related objects mentioned in the natural language instructions above are a pan (pancake maker), a pancake mix, a pancake, and a plate. Not mentioned in the description are some additional tools, for example, the container holding the mix and the spatula for flipping the pancake. Inferring these missing objects is straightforward for a human given their common sense. However, robots have to figure out these objects by other means. Overall, the task scenario contains objects with different physical properties, namely solid, liquid, and deformable objects. This task covers a range of manipulation problems since it involves a spectrum of different object types.

The main actions of this task are pouring the mix and flipping the pancake, where the latter action can naturally be split into the following sub-actions: pushing the spatula under the pancake, lifting it, and turning the spatula. Successfully pouring the mix onto the pancake maker requires that the container holding the mix is positioned at the right height over the pancake maker. At this position the container has to be tilted for some time at the right angle, so that the mix flows out onto the pancake maker. Figure 2 shows our robot, Rosie, pouring a pancake mix onto a pancake maker.

As mentioned above, flipping the pancake can be considered as several sub-actions. For pushing the spatula under the pancake the spatula has to be held at an appropriate angle to get under the pancake. When lifting and turning the pancake the spatula has to be tilted at the correct angle so the pancake falls off and lands upside-down on the pancake maker. Figure 3 shows some aspects of Rosie performing the flipping action.

The pouring and the flipping actions performed by the robot could have various effects ranging from desired to undesired. Some of the undesired effects are depicted in Figure 4. During the pouring action, the robot could spill some pancake mix onto the table or it could pour the mix onto the pancake maker with lots of splashes. During the flipping action, the robot could damage the pancake by touching it from the top, or the pancake could get stuck to the spatula.

1.2. Physical Reasoning in AI

Figure 5 depicts our approach to using formal, logic-based methods to perform commonsense reasoning about problems like pancake making. Humans try to anticipate the appropriate sequence and configuration of actions that
will lead to a desired outcome given an initial situation and an intended goal. However, it is not clear how we accomplish this kind of reasoning, although the simulation theory of cognition may partly provide an answer (Hesslow, 2012). In traditional AI, the initial situation and an action plan are described using a logical axiomatization. Then, a specialized calculus, for example, the situation or the event calculus, is applied in order to transform the axiomatization from the initial situation into a proof that resembles the intended goal. However, three major problems arise when applying such traditional AI approaches to robotics:

Level of abstraction The physical effects of actions strongly depend on the concrete parameterization of continuous variables. For example, the position of the hands and the tilting angle of the container when pouring the pancake mix onto the pancake maker clearly affect the outcome of the action. Abstracting away from these relevant details leads to oversimplified and inadequate conclusions.

Interfering effects/concurrent actions The effects of serial and/or concurrent actions can interfere with each other. For example, a robot that simultaneously moves its hand holding the pancake mix to a position over the pancake...
maker and tilts it might spill some mix onto the table before reaching its target position. Such interfering effects are difficult to model using rules in a logical calculus.

Handling variants Robots should be able to handle variants of the original problem. An intrinsic feature of everyday manipulation tasks is that they will never be repeated under exactly the same conditions. For example, the ingredients or tools a robot has to use might differ; or if the pancake mix has a higher viscosity then the robot has to pour for a longer duration than usual. Not all variants of a problem can be foreseen, yet a robot should be able to cope with variants without the need to extend the underlying theory.

In conclusion, reasoning components for robots should be able to deal with the problems laid out above. That is, they should operate at a level of abstraction that considers the robot’s actuators, sensors and control routines; handle interfering effects; and also cope with variants of a problem. In the next section we will outline the principle by which we enable robots to envision the outcome of their own actions adequately.

1.3. Our Approach

Our aim is to allow robots to reason semantically about objects and actions that rely on the richness of the continuous world. To do this we embed reasoning components deeply within robot control programs, allowing programmers to write more general control programs in a concise way. Our components allow task- and context-related decisions to be made, and action parameters determined, based on the underlying robotic components. The following excerpt of LISP pseudo-code illustrates the basic idea of our constraint-based action specifications, as applied to the example of pouring:

```
(perform (an action
  (type pour)
  (object ?obj = (an object-part
    (contained-in mug)
    (type pancake-mix)))
  (destination ?loc = (a location
    (on pancake-maker)))
  (desired-effect (and (size ?obj small)
    (shape ?obj round)
    (centered ?loc pancake-maker)))
  (undesired-effect (spilled ?obj counter))))
```
The type of the action is `pour`, the object `?obj` is a part of an object of type `pancake-mix` contained in a `mug`, and the destination `?loc` is a location on the `pancake-maker`. The desired effect of the action is a conjunction of several constraints. The object bound to the variable `?obj` should be of small size and have a round shape. Furthermore, the location bound to `?loc` should be centered on the pancake-maker. An undesired effect of the pouring action is the spilling of `?obj` of type `pancake-mix`.

The above example should give the reader only an idea about how we embed the use of naive physics and commonsense knowledge within cognition-enabled robot control. The aim of this work is not to realize this control mechanism, but rather to acquire the commonsense knowledge and generate the models that can be used within reasoning components.

By considering the scenario of making pancakes, we aim to find the appropriate representations and inference mechanisms to enable robots to predict the effects of actions which depend on the way they are executed, i.e. their parameterizations. Therefore we have designed, implemented, and analyzed a framework that allows us to envision the outcome of parameterized robot actions based on physics-based simulations (Kunze et al., 2011b,a). Figure 6 shows the robot Rosie pushing the spatula under pancake and envisioning the action through mental simulation.

Though we have used the example of Rosie to motivate the overall problem of making pancakes, in the remainder of the article we use the PR2 robot to illustrate our ideas. This switch is done mainly for historical reasons as the original work on making pancakes started with Rosie (Beetz et al., 2011). However, more recently it has been transferred to the PR2 platform.

Figure 7 shows how we extend the previously presented approach to commonsense reasoning. Based on a logical axiomatization (i.e., a description of a manipulation scenario and a fully instantiated robot plan) a physics-based simulation is parameterized. The states of task-relevant objects and actions are monitored and their data structures are logged. These log files are interpreted and translated into interval-based first-order representations, called timelines. These logged timelines allow the robot to perform logical queries on the outcome of the scenario. These queries play a key role in the constraint-based action specifications described above. Further, we show how decision trees can be learned from timelines and how they can be used for planning and action monitoring.

Despite using physics-based simulations, our research does not aim to determine the physical effects of action at a detailed level. Instead we aim to capture the qualitative effects and understand how these depend on the parameters of the respective manipulation actions. Furthermore, the developed representations and inference mechanisms should allow the robot to diagnose and revise executed actions; and in the context of learning, they should allow the robot to explore the parameter space more efficiently.

https://www.youtube.com/watch?v=0eIryyzlRuk
1.4. Contributions

In this work, we have integrated methods from the fields of Artificial Intelligence and Robotics in order to envision and qualitatively evaluate the physical effects of robot manipulation actions. To this end, we have realized an open source programming environment which combines logic programming and physics-based simulation in a coherent framework. The main contributions of this work are as follows. We have:

• established an interface for parameterizing and controlling physics-based simulations from the logic programming environment Prolog.

• linked first-order representations to physical object models that can be instantiated in simulation.

• started a library of physical object models and specialized physical behaviors which are not covered by rigid-body simulations, for example, the mixing of liquids.

• developed a monitoring and logging mechanism (configurable from Prolog) that observes data structures of interest within the simulator.

• introduced interval-based first-order representations (timelines) that tightly integrate sub-symbolic and symbolic information from logged simulations as a powerful means for reasoning about and learning from the consequences of robots’ actions.

1.5. Outline

The rest of the article is structured as follows. Related work is reviewed in Section 2. We explain the envisioning framework in Section 3. In Section 4, we describe one example of a specialized physical behavior: how fluids are represented and simulated within the framework. Experimental results of various manipulation scenarios are reported in Section 5. We discuss our approach and the experiments in Section 6. Finally, we summarize the approach, give an outlook on future work and conclude in Section 7.
2. Related Work

The present work can be considered as interdisciplinary research between two fields: Robotics and AI. With this research, we want to enable robots to reason about the consequences of action parameterizations, thereby allowing them to make appropriate decisions about action by using well-established methods from AI plus detailed physical simulations.

Smith and Morgan (2010) have stressed the importance of using simulations in AI research. They developed the open source simulator IsisWorld for investigating problems in commonsense reasoning. Although they also employ a physics engine for their simulations, they consider actions such as picking up an object only at a very abstract level, whereas we focus on the physical details of such actions in order to recognize qualitative phenomena occurring during their execution.

In Johnston and Williams (2008), a general simulation framework and logic-based reasoning methods, in particular tableau-based reasoning, are integrated in order to establish a practical approach to commonsense reasoning. In contrast to their work, we are not aiming at commonsense reasoning in general but rather at reasoning for naive physics problems in the context of everyday robot object manipulation. Instead of looking at isolated problems, we aim for a tight integration between our proposed reasoning system and other processes such as planning, e.g., to predict whether a meal will be edible after executing a specific plan for cooking pasta.

Work by Ueda et al. (2008) describes the design and implementation of a programming system based on EusLisp that make use of a simulation for deformable objects. Thereby, robot control programs can easily exploit the specialized computations made by the simulation. Similarly, we use the logic programming environment Prolog and utilize a physics-based robot simulator. In addition, we have integrated methods for making simulation-based temporal projections into Prolog’s backtracking mechanism in order to perform reasoning about action parameterizations for robot manipulation tasks.

The interactive cooking simulator (Kato et al., 2009) is relevant for our work, since the research aims at a deep understanding of cooking operations, which could bring new insights with respect to representations and reasoning mechanisms for manipulation actions in everyday meal-preparation tasks.

Exploiting physical simulators for effectively solving sub-problems in the context of robotics has become more attractive as shown by a number of recent investigations, where simulations are employed for planning in robocup soccer (Zickler and Veloso, 2009) and for navigating in environments with deformable objects (Frank et al., 2009). A detailed evaluation for using physics engines for improving the physical reasoning capabilities of robots is given in (Weitnauer et al., 2010). But other fields also recognize simulators as valuable tools and utilize them, e.g., for character animation (Faloutsos et al., 2001) and motion tracking (Vondrak et al., 2008).

In the context of Naive Physics (Hayes, 1979, 1985), solutions to the problem of egg cracking (Miller and Morgenstern, 2009), were formulated based on logical axiomatizations (Lifschitz, 1998; Morgenstern, 2001). These approaches are limited in use for robotics as the physical details of the task are abstracted away and variants cannot be handled very flexibly. It is to overcome such limitations that we propose a simulation-based approach. Please refer to our earlier work for more detailed account on the problem of egg cracking using simulation-based techniques (Kunze et al., 2011b).

The integration of numerical simulation and qualitative methods has been investigated before (Weld and Kleer, 1990), for example, work on qualitative-numeric simulation (Berleant and Kupers, 1992) and self-explanatory simulations (Forbus and Falkenhainer, 1990). Work by Lugrin and Cavazza (2007) has shown an integration of numerical simulation and qualitative modeling based on the Qualitative Process Theory (Forbus, 1984) for virtual interactive environments. But no-one we are aware of has investigated a simulation-based approach for making predictions in the context of everyday robot object manipulation.

We ground logical predicates, such as \textit{contacts}(o_1, o_2), in the data from logged simulations. This is similar to work by Siskind (2001), who grounded semantics in visual perception. Similarly, we ground only primitive predicates in logged simulations. Complex predicates are formulated in Prolog and are based on primitive or other complex predicates similar to definitions of symbolic chronicles (Ghallab, 1996). A simulation-based approach for temporal projection in reactive planning is proposed in (Mosenlechner and Beetz, 2009), where prediction is used to detect interfering effects of continuous and concurrent actions. Similarly, our work proposes a simulation-based approach for naive physics reasoning for robot manipulation tasks.
Approaches to robot grasping have used planning and learning from experience to generate possible grasps (Dogar and Srinivasa, 2011; Merici et al., 2013). These approaches provide complementary information to our work and could be integrated to some extent. In particular, it would be interesting to integrate the feedback from real world experiences into the simulation and thereby improve its accuracy.

3. The Envisioning Framework

In this section we describe the overall envisioning framework. First, we give a general overview of the framework and its components, and second we explain the different components of the framework in detail.

3.1. Overview

The general principle of the framework is depicted in Figure 8; it is accessed via a logic-based interface, meaning that both the framework’s input and output are formalized using first-order representations. The input is a description of a situated manipulation Scenario along with a parameterized Action plan that potentially solves the problem. The output of the envisioning framework is a Timeline which holds information about object states, their relationships to other objects and the performed actions of the robot. For example, a robot formalizes the problem of making pancakes by providing a minimalist description of the environment including the kitchen work space; manipulable objects such as a container holding the pancake mix and a spatula; and a specification of the robot itself. In addition, the robot provides an instantiated action plan based on the plan’s corresponding parameter space for pouring the ready-to-use pancake mix onto the pancake maker, flipping the half-baked pancake and placing the fully-baked pancake onto a plate. Finally, based on the envisioned timeline the robot is able to evaluate its parameterized action plan with respect to various performance measures, for example, whether the pancake mix was poured onto the pancake maker without spilling. In order to evaluate a set of given action plans we sample parameter values from the parameter space associated with a plan. In (Kunze et al., 2013), we have shown how a sensible range of parameter values can be extracted from observations of human demonstrations.
Table 1: Envisioning process for flipping a pancake. The process steps comprise the assertion of the scenario, envisioning over a set of parameterized plans, and question answering based on timelines grounded in logged simulations.

<table>
<thead>
<tr>
<th>Step</th>
<th>Logic Programming Environment</th>
<th>Physical Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td><code><assert_scenario(Pancakes).></code></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td><code><assert_scenario(Pancakes,kitchen).></code></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td><code><assert_scenario(Pancakes,pr2).></code></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td><code><param_space(flip,ParamSpace), setof(TL,(member(P,ParamSpace), envision($Pancakes,flip(P),TL)), TLs)).></code></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td><code><member(TL, TLs), holds_tt(on(pancake,pancake_maker),I1,TL), holds_tt(on(pancake,spatula),I2,TL), holds_tt(on(pancake,pancake_maker),I3,TL), before(I1,I2),before(I2,I3), holds_tt(occurs(flip(P)),I4,TL), during(I2,I4)).></code></td>
<td></td>
</tr>
</tbody>
</table>
Figure 9 visualizes how the process is embedded within Prolog’s backtracking mechanism. Given Prolog’s depth-first search strategy a proof tree is generated whereby the branches correspond to different parameterizations of robot action plans. Eventually, the timelines are evaluated with respect to desired and undesired effects.

To cope with the uncertainty inherent in robot object manipulation, the same set of action parameters can be applied under varying conditions. To some extent, the physics-based simulation is already stochastic. Additionally, the poses of objects and the robot itself, and the initial state of objects can be varied. Thereby, the robustness of a single parameterized plan can be evaluated on the basis of the set of resulting timelines. Furthermore, it is possible to learn a joint probability distribution over the different outcomes of a robot plan. However, learning such a distribution is beyond the scope of this paper.

After we have looked at the general principle of the framework and its input and output specifications, we show how the envisioning functionality is achieved through the interplay of various components. Figure 10 shows the components of the framework as well as their interactions among each other.

As stated earlier, the framework’s interface is based on first-order representations. We employ Prolog to realize

the interface of the envisioning framework. Given domain knowledge (a knowledge base), a scenario description and an action plan, Prolog initializes and orchestrates the overall envisioning process and eventually evaluates the resulting timelines. One of the main constituents of the envisioning process is a physics-based simulation in which a specified robot performs manipulation actions according to its parameterized action plan. During simulation, dedicated monitoring routines observe the world state, including object poses, velocities, contacts between objects, etc. Similarly, the actions of the robot are monitored and logged. After the execution of the robot control program, the logs are read by Prolog and translated into interval-based first-order representations, called timelines. Eventually, the timelines are evaluated with respect to predefined goal conditions and other performance measures. Now that we have placed all components of the framework into context, we will explain how the individual components are realized.

3.2. Knowledge Base

The robot is equipped with knowledge about situated manipulation problems, action plans that describe how to solve these problems, and parameter spaces of primitive actions occurring in the plans. For representing the knowledge, we mainly use Description Logic (DL), in particular the semantic web ontology language OWL\(^5\). We build our representations on OpenCyc\(^6\)'s upper-ontology and extend type and property descriptions whenever necessary.

Following our previous work, we represent the environment of the robot with semantic maps (Tenorth et al., 2010a). These maps describe not only the geometric properties of the environment, but also describe semantic categories like cooking top using an ontology. Similarly, the everyday objects that are to be manipulated by the robot are described within the ontology. All physical objects are derived from a generic Object concept. The three major subclasses are Solid, Fluid, and Deformable. Fluid has further specializations, namely Liquid and GranularFluid. Given the principle of inheritance, properties of a concept are derived from their super-concepts. For example, Object has a property named HasModel that relates Object to PhysicalModel. Thereby all sub-concepts of Object as well as their respective sub-concepts have this property. As the environment is simulated, it makes sense to relate all objects to physical models. These models can be described in all formats that can be loaded into the physical simulator Gazebo\(^7\). In this work, we mainly make use of physical object models described in the Unified Robot Description

\(^5\)http://www.w3.org/2004/OWL
\(^6\)http://www.opencyc.org
\(^7\)http://gazebosim.org

Figure 10: Envisioning framework overview.
Format (URDF) But other formats such as COLLADA are also feasible. Eventually, an instance of an object is linked to a physical model that can be instantiated within the Gazebo simulator.

Figure 11 shows an excerpt of the ontology. At the top, it visualizes the relation between Object and PhysicalModel, on the left, the hierarchical object taxonomy including the concepts Liquid, Solid, PancakeMix and Container, on the right, the sub-concepts of PhysicalModel, and at the bottom it shows instances and their relations among each other. The in relation between PancakeMix and Container is explained in Section 3.6.

The robot itself is specified by the Semantic Robot Description Language (SRDL) which we introduced in Kunze et al. [2011c]. The description includes the kinematic structure of the robot as well as a semantic description of its sensors and actuators. All of the aforementioned descriptions have links to physical models that can be instantiated within a simulator. Action plans are represented hierarchically within the ontology as depicted in Figure 12. Note that the order of actions is implicitly defined by a depth-first traversal strategy.

3.3. Prolog — A Logic Programming Environment

Prolog is at the heart of the envisioning framework. It serves as an interface to the robot, and coordinates all other components of the framework using a simple language for making temporal projections. Within this language we use notation similar to that used in the Event Calculus [Kowalski and Sergot, 1986]. To support reasoning in our system we have developed the following temporal projection language in Prolog.

Figure 11: Simplified Ontology about “Making Pancakes”.

Figure 12: Ontological representation of an action plan for making pancakes.
Temporal Projection Language. To initiate a projection, a new scenario is asserted and task-relevant descriptions are added to it, then a robot control program is executed using control parameters selected from a specified range of possible values. States that are traversed during simulation are monitored, logged, and translated into timelines. Eventually, the generated timelines are subject to further evaluations of specialized predicates. For example, a timeline can be evaluated with respect to desired (or undesired) outcomes, qualitative spatial relations, or other performance criteria such as the speed of execution.

The following Prolog query shows how the simulation-based temporal projection can be used. Terms starting with an upper-case letter such as `Scenario` denote variables, terms starting with a lower-case such as `kitchen_env` denote concrete instances in the knowledge base, and the predicate `occurs` is an example of a specialized predicate that evaluates a given timeline:

```prolog
?- assert_scenario(Scenario),
    assert_scenario(Scenario,kitchen_env),
    assert_scenario(Scenario,pr2_robot),
    assert_scenario(Scenario,obj1),
    param_space(actionplan,ParamSpace),
    setof(T, (member(P,ParamSpace),
             envision(Scenario,actionplan(P),T)),Ts),
    member(Timeline,Ts), occurs(event, Time, Timeline).
```

Values for the formal parameters, e.g. `P`, are selected from their respective range and are bound to the variable in order to make them accessible for further evaluations. The generation and selection of parameter values is an open problem. Intuitively, the parameters could be chosen depending on the qualitative outcomes of the simulation, however, this is beyond the scope of this article. The language elements for making temporal projections are as follows:

- `assert_scenario(Scenario)` asserts a new scenario and generates a unique identifier (`Scenario`) to access the scenario within other predicates.

- `assert_scenario(Scenario, Entity)` asserts an entity or set of entities to a given scenario. There are three ways of asserting an entity: either by naming the entity, if it is already known by the knowledge base including its physical specifications that are needed by the simulator; by providing the physical specifications of a previously unknown entity explicitly; or by providing an object type that can be generated by the object model factory.

- `envision(Scenario, Plan(Params), Timeline)` performs a simulation-based temporal projection for an asserted scenario and a fully instantiated robot control program/plan, and returns an ID of the projected timeline. This program is realized by two subprograms, namely `simulate` and `translate`.

- `simulate(Scenario, Plan(Param), Log)` sets up and runs the simulation. First, the Gazebo simulator is launched and all entities that were added to the given scenario by the `assert_scenario` command are loaded successively. If necessary, entity specifications are generated on-the-fly by the object model factory and spawned into the simulator. Second, the robot control program is executed, where formal parameters are selected from their respective ranges. By utilizing Prolog’s backtracking mechanism the cross product of all valid parameter instantiations is automatically generated. After a certain time, the simulation is stopped and all processes are shut down. The output variable `Log` points to the log files of the robot control program and the task-related objects.

- `translate(Log, Timeline)` translates the logged simulations into a timeline, by using the first-order predicates `Holds(f,t)` and `Occurs(e,t)`. To differentiate between the individual timelines, a unique ID (`Timeline`) is generated and attached to the individual fluents and events.

- `occurs(Event, Time, Timeline)` retrieves the given `Timeline` and evaluates it with respect to an event (`Event`) that might have occurred at a point in time (`Time`) during the simulation. If the specified event is found in the timeline the predicate evaluates to true.
holds(\text{Fluent, Time, Timeline}) \text{ Retrieves the given Timeline and evaluates it with respect to a fluent (Fluent) that might have held at a point in time (Time) during the simulation. If the specified fluent is found in the timeline the predicate evaluates to true.}

3.4. Physics-based Simulation

Within our approach, we utilize a physics-based simulator, namely Gazebo\footnote{http://gazebosim.org} for computing the effects of robot actions, object interactions and other physical events. We augmented the rigid-body physics to simulate specialized behaviors.

\textit{Rigid-Body Simulation.} We parameterize the simulator on the basis of the logical axiomatization, i.e. the domain knowledge, run simulations and log data of features such as position, velocity, forces, and contact points between objects over time. After explaining shortly how a physics-based simulator computes physical effects, we present how the Gazebo simulator can be configured and how we derive a configuration based on the assertions in the knowledge base. In principle a physics-based simulator works as follows: the simulator starts its computation of physical effects based on an initial configuration. Then it periodically receives motor control commands which are translated into forces and it updates the state of the simulated world according to physical laws. Within each tiny update step, forces are applied to affected objects by considering both the object’s current dynamic state and its properties such as mass and friction. Later we explain how we augment the simulation in order to account for physical phenomena such as breaking or absorbing.

The initial configuration of the Gazebo simulator is based on an XML file, called \textit{world file}. It describes properties of the simulation, specifies parameters for the physics engine (ODE) and describes all things occurring in the world, including robots, sensors and everyday objects. Within a world file each object has its own model description. Such model descriptions comprise mainly the object’s shape and a set of physical properties such as size, mass, and rigidity. When properties are not explicitly specified within the knowledge base, we simply assume default values.

To simulate physical phenomena such as breaking objects we augment the model descriptions, how this is realized is presented in the next paragraph.

\textit{Augmented Simulation.} The Gazebo simulator is designed for simulating robots, sensors and objects, whereby physical aspects of objects and their interactions are more or less limited to rigid body dynamics. Since we want to simulate naive physics problems with phenomena such as breaking, mixing, and cooking we augment object model descriptions with detailed shape models, controllers for simulating physical phenomena, and monitors for logging states of objects. The extended model descriptions are collected in a library for simulating phenomena of everyday physics.

Instead of modeling objects as rigid bodies, we describe the shape of objects similar to Johnston and Williams \cite{JohnstonWilliams2008} with graph-based structures which allow us to inspect physical aspects at a more detailed level. These model configurations are derived from the information stored in the knowledge base. The basic entities for modeling the shape of an object are \textit{bodies} and \textit{joints}, which are mutually connected. Properties of an object such as type, mass, spatial extensions, and rigidity determine the attributes of these basic entities.

In order to simulate new classes of objects, for example, objects that are breakable and objects that change their state from liquid to a deformable structure we add controllers to the object model descriptions. The latter is described in detail in Section\footnote{http://gazebosim.org}. These controllers are called within each simulation step and perform some specialized computation. The computation can be based on physical properties calculated by the simulator or on results computed by other controllers. Thereby object attributes such as being broken and being cooked can be computed. This allows us to simulate a new range of processes such as breaking and cooking by only adding the respective attributes to objects in the knowledge base.

Further, in a given domain there are only a limited number of activities and processes that have to be implemented which makes this approach scalable. In previous work, we have analyzed the diversity and variability of activities within the household domain \cite{NygaBeetz2012}. Also, the implementation of the various continuous processes with procedural programs is easier than their realization by the means of logical axioms. In Section\footnote{http://gazebosim.org} we provide
more details on the augmented simulation. In particular, we will explain how fluids are represented and simulated within the framework. However, as the augmented fluid simulation itself is rather complex, we continue with the remaining components of the envisioning system for the sake of a better understanding.

3.5. Monitoring of Simulations and Actions

In addition to controllers realizing physical behaviors, we add monitoring routines to observe and log the state of objects at each simulation step. Additionally we monitor the actions the robot is performing.

Actions of the robot are monitored as follows. Ideally, robot control programs would be written as plans. For example, using a plan language such as CRAM (Beetz et al., 2010a) allows robots to interpret and reason about its own programs. However, in this work we treat a robot control program as a black box, so it can be implemented in any kind of programming language. In order to reason about the actions of a robot, we assume that at least the actions of interest are logged using a simple interface. The begin and the end of an action as well as its parameters should be logged by the control program. This allows robots to relate their actions to the physical events of the simulation. An example of an action log for picking up a spatula using the left robot arm is shown in Table 2. In the excerpt of the log, the hierarchical decomposition of actions and sub-actions are visible. The **pick_up** action is decomposed into several action primitives including opening and closing the gripper, and moving the arm’s end-effector into certain pose.

<table>
<thead>
<tr>
<th>Time</th>
<th>ID</th>
<th>Status</th>
<th>Action</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.917</td>
<td>12</td>
<td>begin</td>
<td>pick_up</td>
<td>(spatula_handle, left_arm)</td>
</tr>
<tr>
<td>53.917</td>
<td>13</td>
<td>begin</td>
<td>open_l_gripper</td>
<td>(width, 0.09)</td>
</tr>
<tr>
<td>56.959</td>
<td>14</td>
<td>begin</td>
<td>move_l_arm</td>
<td>(l_wrist_flex_link, (position, (0.310885, 0.490161, -0.195159)), (orientation, (-2.73593e-05, 0.013794, 0.00194869, 0.999903)))</td>
</tr>
<tr>
<td>59.175</td>
<td>14</td>
<td>end</td>
<td>move_l_arm</td>
<td>–</td>
</tr>
<tr>
<td>60.573</td>
<td>15</td>
<td>begin</td>
<td>move_l_arm</td>
<td>(l_wrist_flex_link, (position, (0.380885, 0.490161, -0.195159)), (orientation, (-2.73593e-05, 0.013794, 0.00194869, 0.999903)))</td>
</tr>
<tr>
<td>60.590</td>
<td>16</td>
<td>begin</td>
<td>close_l_gripper</td>
<td>(width, (0.0))</td>
</tr>
<tr>
<td>72.063</td>
<td>17</td>
<td>begin</td>
<td>move_l_arm</td>
<td>(l_wrist_flex_link, (position, (0.380885, 0.490161, 0.00484052)), (orientation, (-2.73593e-05, 0.013794, 0.00194869, 0.999903)))</td>
</tr>
<tr>
<td>74.307</td>
<td>17</td>
<td>end</td>
<td>move_l_arm</td>
<td>–</td>
</tr>
<tr>
<td>74.315</td>
<td>12</td>
<td>end</td>
<td>pick_up</td>
<td>–</td>
</tr>
</tbody>
</table>

The data structures of the world state we are monitoring are the position, orientation, linear and angular velocities, and the bounding boxes of objects and their respective parts. Furthermore, we observe the physical contacts between objects and log information such as contact points, contacts normals, and forces. All this information is constantly monitored and only changes are logged.

3.6. Fluents, Events and Timelines

Reasoning about everyday object manipulation requires robots to understand the spatial and physical configurations of objects and their parts over time. This section focuses on the knowledge representation part of our framework. A general overview on spatial, physical and temporal reasoning is given in the book by Davis (1990). Robots should
be able to extract information about an object’s position, its contacts, and its spatial relations to other objects from its environment in order to reason about a task. Since we employ physical simulation, all this information can be abstracted from the data structures of the simulator. Conceptually, the robot can access this information using the predicate \textit{SimulatorValue} as follows:

$$\text{SimulatorValue(position(o, pos), t)}$$

where \textit{position} is an exemplary function for retrieving information about an object \(o\) at a certain point in time \(t\). Eventually, the information about the object’s position is bound to the variable \textit{pos}. Table 3 lists further functions that can be used to access information about an object’s world state. All functions provide information for a given object, e.g. its position, orientation, velocity, dimension, and its bounding box. As we will see later, many spatial relations are computed based on the object’s bounding box. Thereby, the \textit{bbox} function plays an important role for reasoning about the object’s state.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{position(o, pos)}</td>
<td>3D position of object (o), \textit{pos} is a vector (\langle x, y, z \rangle)</td>
</tr>
<tr>
<td>\textit{orientation(o, quat)}</td>
<td>3D orientation of object (o), \textit{quat} is a quaternion (\langle q_1, q_2, q_3, q_4 \rangle)</td>
</tr>
<tr>
<td>\textit{linear_velocity(o, lv)}</td>
<td>linear velocity of object (o), \textit{lv} is a vector (\langle lv_x, lv_y, lv_z \rangle)</td>
</tr>
<tr>
<td>\textit{angular_velocity(o, av)}</td>
<td>angular velocity of object (o), \textit{av} is a vector (\langle av_x, av_y, av_z \rangle)</td>
</tr>
<tr>
<td>\textit{dim(o, dim)}</td>
<td>dimensions of object (o), \textit{dim} is a vector (\langle d_x, w_y, h_z \rangle)</td>
</tr>
<tr>
<td>\textit{bbox(o, bbox)}</td>
<td>bounding box of object (o), \textit{bbox} is a vector (\langle x_{\text{min}}, y_{\text{min}}, z_{\text{min}}, x_{\text{max}}, y_{\text{max}}, z_{\text{max}} \rangle)</td>
</tr>
</tbody>
</table>

Another set of functions that can be accessed via the \textit{SimulatorValue} predicate provides information about an object’s contacts. Contact information is crucial for the interpretation and analysis of the physical effects of actions. As information about contacts are always reported between two objects, all functions take two objects as arguments. For example, the \textit{contacts} function is true when there is a contact between two objects at a certain point in time. It is a symmetric function, that is, whenever object \(o_1\) is in contact with \(o_2\), object \(o_2\) is in contact with \(o_1\). However, note that not all functions about contacts are symmetric. For example, the \textit{force} function provides information about the force one object exerts onto another. Thus, the reported information about the force has a direction. Table 4 shows functions that extract information about contacts between objects including contact positions, normals, penetration depths and forces.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{contacts(o_1, o_2)}</td>
<td>true if object (o_1) is in contact with object (o_2)</td>
</tr>
<tr>
<td>\textit{positions(o_1, o_2, positions)}</td>
<td>list of contact positions between (o_1) and (o_2)</td>
</tr>
<tr>
<td>\textit{normals(o_1, o_2, normals)}</td>
<td>list of contact normals at contact positions</td>
</tr>
<tr>
<td>\textit{depths(o_1, o_2, depths)}</td>
<td>list of penetration depths at contact positions</td>
</tr>
<tr>
<td>\textit{force(o_1, o_2, forces)}</td>
<td>forces between (o_1) and (o_2), \textit{forces} is a vector (\langle f_x, f_y, f_z \rangle)</td>
</tr>
<tr>
<td>\textit{torque(o_1, o_2, torques)}</td>
<td>torques between (o_1) and (o_2), \textit{torques} is a vector (\langle t_x, t_y, t_z \rangle)</td>
</tr>
</tbody>
</table>

\textit{Fluents.} Based on the low-level information about an object’s world state and its contacts, we define fluents, i.e. conditions over time, about an object’s spatial relationships to other objects. Here we distinguish between different types of spatial relations. Table 5 gives an overview of the implemented fluents.
Fluents describe conditions over time. For example, the condition that object A is on object B changes during the course of action. Therefore, fluents have to be related to time. In this work, we represent fluents as functions and use similar notations as in the Event Calculus (Kowalski and Sergot, 1986). The `Holds` predicate is used to test whether a fluent is true at a certain point in time or not. Fluents that are interpreted as functions are called reified. The `Holds` predicate looks as follows:

$$\text{Holds}(f, t)$$

where f is an arbitrary fluent from Table 5 and t a point in time.

The truth values of fluents are defined by logical sentences. These sentences are formed on the basis of other fluents and/or predicates that are grounded in the data structures of the simulator. For example, the `on` fluent is defined as follows:

$$\text{Holds(on}(o_1, o_2), t_i) \iff \text{Holds(contacts}(o_1, o_2), t_i) \land \text{Holds(above}(o_1, o_2), t_i)$$

An object o_1 is on another object o_2 whenever the objects are in contact with each other and the first object is above the second. The `contacts` fluent is simply defined by the value reported by the simulator:

$$\text{Holds(contacts}(o_1, o_2), t_i) \equiv \text{SimulatorValue(contacts}(o_1, o_2), t_i)$$

The `above` fluent retrieves the bounding boxes of both objects and compares them in order to compute its truth value:

$$\text{Holds(above}(o_1, o_2), t_i) \equiv \text{SimulatorValue(bbox}(o_1, bbox_1), t_i) \land \text{SimulatorValue(bbox}(o_2, bbox_2), t_i) \land \text{Above(bbox}_1, bbox_2)$$

The `Holds` predicate, introduced above, can be used to assess a condition at a certain point in time. However, many conditions hold not only a single point in time, but rather during a certain time span. To express that a fluent holds during whole interval, we define another predicate as follows:

$$\text{HoldsThrough}(f, [t_1, t_2])$$
whereby f denotes a fluent and $[t_1, t_2]$ is a time interval. Sometimes we also use i to denote a time interval. The HoldsThroughout predicate allows us to talk about enduring conditions over time. In order to relate fluents that hold at different intervals we implemented predicates realizing the thirteen temporal relationships according to Allen [1983]. For example, the following logical sentence can be used to describe that the pancake mix was in the container before it was on the pancake maker:

\[
\text{HoldsThroughout}((\text{in} (\text{mix}, \text{container}), i_1)) \land \\
\text{HoldsThroughout}((\text{on} (\text{mix}, \text{pan}), i_2)) \land \\
\text{Before}(i_1, i_2)
\]

Events. Besides fluents, a temporal representation must be able to describe the occurrence of events and actions. In analogy to fluents, we assess the truth value of events and actions using the Holds and the HoldsThroughout predicates, i.e.:

\[
\text{Holds}(\text{occurs} (e), t) \text{ or } \text{HoldsThroughout}(\text{occurs} (e), [t_1, t_2])
\]

For example, the event of cooking the pancake mix is formalized as

\[
\text{HoldsThroughout}(\text{occurs} (\text{cook} (\text{mix})), [t_1, t_2]).
\]

Actions of a robot can be represented similarly. Pouring the pancake mix can be represented as

\[
\text{HoldsThroughout}(\text{occurs} (\text{pour} (\text{mix})), [t_1, t_2]).
\]

Timelines. In this work, we have developed timelines as a data structure to represent all information about narratives. Similar to chronicles (Ghallab, 1996), timelines represent reified fluents in temporally qualified predicates. Figure 13 visualizes fluents and events of the “Making Pancakes” problem that are captured by a timeline. The actions of the robot correspond to the formal representation shown in Figure 12. The cooking event is relatively short, since it only transforms the mix into a pancake. This behavior can be recognized by a change from fluent on(mix,pan) to on(pancake,pan). The undesired effect of spilling some pancake mix onto a table is represented by the fluent spilled.

Timelines are comprehensive data structures that are consulted for answering queries about a particular narrative or a set of multiple narratives. Therefore, it is important that queries can be formulated in a way that they relate either to a single or multiple timelines. We achieve this, by extending all previously introduced predicates by a third argument, namely a timeline. Hence the Holds predicate is finally formalized as follows:

\[
\text{Holds}(f, t, tl)
\]

and the Holds Throughout predicate as:

\[
\text{HoldsThroughout}(f, [t_1, t_2], tl)
\]

whereby tl is a unique ID for accessing a timeline. Similarly, the SimulatorValue predicate is extended with an additional argument.

We use Prolog’s search mechanism to retrieve answers from a set of timelines. In general, the linear search for particular objects, fluents, and/or events over a set timelines is quite slow. Therefore, we have designed and implemented several internal data structures that allow for an efficient search. For example, we use object-dependent skip lists (Munro et al., 1992) of temporal events to find fluents and events related to an object rather quickly. Furthermore, instead of linear search we use binary search methods to retrieve information from a timeline in logarithmic time.
4. Augmented Simulation of Fluids

Fluids play an important role in everyday cleaning and meal preparation tasks. Davis (2008) presents a formal solution to the problem of pouring liquids and in his work on the representation of matter (Davis, 2010), he investigated the advantages and disadvantages of various representations including those for liquids. Simulating fluids is also of interest in physics and chemistry (Allen and Tildesley, 1989). As some processes occur very fast, events might not be observable in all its details in reality. The purpose of simulating liquids in our work is to observe the impact of the robot’s action with respect to the liquid’s behavior, which is of importance when, e.g., pouring and mixing liquids. Different approaches have been incorporated to simulate liquids depending on the required level of accuracy needed (Griebel et al., 2007). In (Klapfer et al., 2012), we proposed two complementary approaches for simulating liquids, (1) a graph-based model similar to (Johnston and Williams, 2008) and (2) a Monte-Carlo simulation for modeling diffusion and convection (Frenkel and Smit, 2001). Neither simulates liquids in all their aspects, but provide enough information for making logical inferences about qualitative phenomena.

4.1. Representing Fluids using Graph-based Models

The model for representing fluids was adapted from the work of Johnston and Williams (2008). Originally, it was designed to simulate a wide range of physical phenomena including diverse domains such as physical solids or liquids as hyper-graphs where each vertex and edge is annotated with a frame that is bound to a clock and linked to update rules that respond to discrete-time variants of Newton’s laws of mechanics.

Our pancake mix model can be in two states: first, the mix is liquid, and second, the mix becomes a deformable pancake after cooking. In the simulation we use a graph-based model for representing the mix and the pancake. The vertices of the graph are particles where each particle is defined by a round shape with an associated diameter, a mass and a visual appearance model. The benefit of this model is that it is realized as a graph with no connection between the vertices whenever the state is liquid. This means that the individual particles could move freely to some extent.
This was useful for performing the pouring task. Due to the fact of the particles not being connected with joints, the simulated liquid can be poured over the pancake maker where it disperses due to its round shape. A controller was attached to the spheres that applies small forces to the particles in order to simulate the viscosity of the pancake mix. Currently, we do not consider heat as the trigger of transforming the liquid to a solid pancake but simply assume the event to occur after constant time. We identified all particles on the pancake maker and created the pancake based on a graph traversal algorithm starting at the cluster center (Figure 14).

![Figure 14: Generating a deformable pancake model from liquid particles. Illustration of the algorithm's procedure: (a) Radial search from the seed point. (b) Creation of hinge joints to the neighbors. (c) Radial search and creation of joints in a recursive step.](image1)

4.2. Clustering of Fluid Particles

![Figure 15: Basic idea of the clustering approach: during simulation we identify clusters of particles. For example, after pouring, one cluster resides still in the mug, a second is on the pancake maker and a third is spilled onto the table. We are able to extract information including contacts, position, extension, and size of the individual clusters.](image2)

The basic idea of applying clustering methods is as follows. Let us, for example, assume that someone pours some pancake mix onto a pancake maker as illustrated in Figure 15. After the pouring action some particles reside in the container, some are spilled onto the table, and some others are on the pancake maker which will eventually form the pancake. If we want to address the particles in these three locations, it makes sense to group them in chunks (clusters). This reflects also how humans address fluids such as milk or sugar in natural language, e.g., *there is some milk spilled onto the table*. Therefore the behavior and the contact information of clusters of particles in everyday manipulation tasks are of particular interest.

We use a Euclidean clustering strategy for computing the groups of particles as shown in Algorithm 1. Instead of looking at the individual particles when interpreting the outcome of a manipulation scenario we look at clusters of particles. For every cluster we compute information such as mean, covariance, size (number of particles), and its bounding box. Since we have full knowledge about every particle and its belonging to a cluster, we can keep track of
Algorithm 1 Euclidean clustering of particles.

1) Set up an empty list of clusters Clst

2) For every particle $p_i \in P$ do
 - Add p_i to the current cluster C
 - For every point $p_j \in C$ do
 - Find particle p_k using a radial search around particle p_j
 - For each particle p_k add it to C if not processed, yet
 - Terminate if all $p_j \in C$ have been processed
 - Add C to the list of clusters Clst and reset C to an empty list

3) The algorithm terminates if all particles have been processed and are part of a cluster $c_i \in \text{Clst}$

it, i.e., if its pose or extension change over time. However, whenever new particles become part of or are separated from a cluster we assign a new ID to it. That is, clusters of particles have only a limited time during which they exist. Hence, we can recognize which actions cause changes to clusters and their properties.

4.3. Monte Carlo Simulation of Fluids

Deformable bodies are seen as a big challenge in simulation and require a lot of computational power (Brown et al., 2001). The physical simulation approach (Frenkel and Smit, 2001) uses a Monte-Carlo process to simulate diffusion of liquids. Molecular movement is either provoked from heat or from a difference in potential. The rate of change depends on the diffusion coefficient and its respective change. This is a well known concept in physics described by Equation 1 and denoted as the macroscopic diffusion equation or Fick's second law of diffusion. This differential equation takes into consideration a change of concentration over time:

$$\frac{\partial C}{\partial t} = D \cdot \frac{\partial^2 C}{\partial x^2}$$

(1)

where C denotes the concentration and D the diffusion coefficient. It can be shown (Frenkel and Smit, 2001) that Random Walk gives one particular solution for the above partial differential equation. Motivated by this idea we applied an algorithm proposed by Frenkel et al. to simulate this physical effect (Klapfer et al., 2012).

Stirring a material is another type of mass transfer called convection. Convection is the movement of mass due to forced fluid movement. Convective mass transfer is a faster mass transfer than diffusion and happens when stirring is involved. The faster the fluid moves, the more mass transfer and therefore the less time it takes to mix the ingredients together (Gould et al., 2005). We simulated this physical property by simply introducing an impulse in the stirring direction to the particles in the point cloud that are in reach of the cooking spoon.

4.4. Measuring the Homogeneity of Mixed Fluids

Of particular interest is the homogeneity of the liquid when stirring was involved in the conducted experiments. It was decided to use the local density of the particles represented as point cloud as a measure of divergence, while using the assumption that the inverse of this is a measure of homogeneity. This distance measure is known as the Jensen-Shannon divergence (Majtey et al., 2005) and used widely in information theory. It is defined as:

$$JS(P, Q) = \frac{1}{2} S(P, \frac{P+Q}{2}) + \frac{1}{2} S(Q, \frac{P+Q}{2})$$

(2)

where $S(P, Q)$ is the Kullback divergence shown in equation 3 and P and Q two probability distributions defined over a discrete random variable x.

$$S(P, Q) = \sum_x P(x) \log \left(\frac{P(x)}{Q(x)} \right)$$

(3)

We propose the division of the point cloud in a three-dimensional grid (Figure 16). Each cell of the grid represents a discrete probability distribution x defined on the mixed probabilities of the two classes P and Q, that could be computed as the relative frequency.

The following example emphasizes the usage of this distance function related to the homogeneity of a liquid which consists of two classes of particles. If we assume a perfect separation of the two classes we would expect a high divergence and a low homogeneity as we define the homogeneity as its inverse.
5. Experiments

For showing the feasibility of our approach, we have conducted several robot manipulation experiments in simulation including the problem of making pancakes as described in Section 1.1. In these experiments, we addressed the requirements posed in the problem formulation.

The robot model used in our experiments is the PR2 robot platform developed by Willow Garage[11]. The PR2 has an omnidirectional base, a telescoping spine and a pan-tilt head. Each of the two compliant arms of the platform have four degrees of freedom (DOF) with an additional three DOF in the wrist and one DOF gripper. The sensor setup is comprised of a laser sensor on the base, a tilting laser sensor for acquiring 3D point clouds, two stereo camera setups and a high resolution camera in the head. The hands also have cameras in the forearms, while the grippers have three-axis accelerometers and fingertip pressure sensor arrays. The entire setup is realistically modeled and ready to use in the Gazebo simulator.

In this work, we present experimental results for the task of making pancakes. We have divided the task into three sub-tasks, namely mixing, pouring and flipping. As these sub-tasks represent rather basic actions in the cooking domain which are relevant for many meal preparation tasks the following results can be generalized to other tasks such as, for example, making omelets.

5.1. Mixing Fluids — Analysis of Homogeneity

We used the Monte Carlo method described in Section 4.3 to simulate the physical effects when mixing fluids with different trajectories. We selected the coefficients to represent two viscous fluids and performed four experiments where the robot stirred the fluids using (1) an elliptic trajectory, (2) a spiral trajectory, (3) a linear trajectory, and (4) no trajectory (without stirring). The results were evaluated on the basis of the homogeneity measure (Section 4.4). As we expect, when the robot does not stir the fluids the ingredients do not mix very well because only the diffusion process is influencing the homogeneity. Hence, the result of the experiment confirms our hypothesis: Stirring increases the homogeneity of mixed fluids.

Furthermore, the result showed that with an elliptic trajectory the best result could be achieved. Given the knowledge of homogeneous and non-homogeneous regions, a robot could adapt the trajectory dynamically by applying techniques known from Reinforcement Learning. A qualitative interpretation could be based on a logical predicate that is true when the homogeneity is above a certain threshold and otherwise false. Thereby a robot could decide when to stop stirring with a particular trajectory.

5.2. Pouring Fluids — Reasoning about Clusters

In this experiment, we address the scenario of pouring some pancake mix located in a container onto a pancake maker: the robot grasps a mug containing the pancake mix from the table, lifts it and pours the content onto a pancake maker. In this experiment we used the resulting timelines to analyze the qualitative outcome of the executed action.

Table 6: Attributes of the pouring domain with their respective types and ranges.

<table>
<thead>
<tr>
<th>Type</th>
<th>Attribute</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Parameter</td>
<td>Angle</td>
<td>Low, Mid, High</td>
<td>The angle at which the container is held during the pouring action</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>Short, Med, Long</td>
<td>Denotes the time during which the container is held at a certain angle</td>
</tr>
<tr>
<td></td>
<td>Position</td>
<td>Left, Behind, Above</td>
<td>The position with respect to the pancake maker</td>
</tr>
<tr>
<td>Context (perceptible)</td>
<td>Particles</td>
<td>Few, Many</td>
<td>Number of particles, i.e., the amount of pancake mix in the container</td>
</tr>
<tr>
<td></td>
<td>Container</td>
<td>Mug, Bottle</td>
<td>The type of the container</td>
</tr>
<tr>
<td>Effect</td>
<td>Size</td>
<td>Small, Medium, Large</td>
<td>The size of the pancake (particles that are on the pancake maker)</td>
</tr>
<tr>
<td></td>
<td>Spilled</td>
<td>Small, Medium, Large</td>
<td>The amount of pancake mix that has been spilled after the pouring action</td>
</tr>
</tbody>
</table>

The parameterization of the task included the gripper position, the pouring angle and the pouring time. We also looked at different container types and fill levels. Table 6 gives an overview of attributes and their respective ranges that are relevant for a pouring action. Some of the attributes are controllable parameters of the pouring action such as angle, time, and position. Others describe the context of the scenario. Context-dependent attributes such as fill level (particles) and container type (container) are perceptible by the robot. Effects of the action include the size of the pancake and the amount of spilled particles. Effectively all attributes, except ‘container’, are continuous by nature. However, as motivated earlier, we would like to learn interpretable action models. Therefore, we discretized the ranges of all continuous attributes to nominal concepts using Euclidean clustering methods.

The task was considered to be successful if no pancake mix has been spilled, i.e. the liquid resides on the pancake maker or in the container and not on other objects such the kitchen table after the pouring action ends. We used the resulting clusters and their corresponding contact and spatial information to examine the outcome. Figure 17 shows how clusters of pancake mix are spatially related to other objects before, during and after the pouring action on a single timeline.

Figure 17: Visualization of the main clusters of particles before, during and after the pouring action. In this experiment the pancake mix was represented by 150 particles. The number of particles of a cluster is shown in parenthesis. During the simulation there were more than 20 clusters generated on this timeline.

The following Prolog expression shows how information about clusters can be retrieved from timelines (TL):

?- holds_tt(occurs(pour(Params)),I,TL), [_,End] = I,
Figure 18: Amount of spilled particles while pouring pancake mix from different positions. The blue dotted circle indicates the pancake maker. The tested positions are organized in a grid structure above the pancake maker (red dots).

```prolog
partOf(X, pancake_mix), holds(on(X, pmaker), Time, TL),
after(Time, End),
simulator_value(size(X, Size), Time, TL).
```

where `X` denotes a cluster of pancake mix in contact with a pancake maker after a pouring action has been carried out. Figure 18 shows results from experiments in which the position of the container was varied in x and y direction over the pancake maker. The figure shows the amount of pancake mix (particles) that were spilled onto the table. The tested positions are organized in a grid structure above the pancake maker (red dots). Given the symmetry of the pancake maker, for each of the positions the pouring direction was always pointing towards north. As explained earlier, we mapped the value of the particle count to a number of discretized classes (Small, Medium, and Large) to be able to interpret the results semantically. Note that a similar query to the one above can be embedded within the constraint-based action specification laid out in Section 1.4.

Additionally, we used logical queries such as the one above to extract data for learning decision trees in order to classify pancake sizes and pouring angles. The input data that we extract from each simulation run is a tuple as follows:

```plaintext
⟨container, particles, time, angle, size⟩
```

whereby `container` denotes the type of container (mug or bottle), `particles` denotes the fill level of the container (few or many), `time` denotes the duration of pouring (short, medium, long), `angle` denotes the angle of the container while pouring (low, medium, high), and `size` denotes the size of the resulting pancake (small, medium, large).

Figure 19 shows two situations after a pouring action has been performed using the same parameterization. The left image depicts the situation when a mug was used, the right when a bottle was used for pouring. The distinctive distributions of particles on the pancake maker show how the outcome of a pouring action depends qualitatively on the context, that is, on the type of the container.

Figure 20 visualizes the relation of pouring angle and duration (time) quantitatively. The top row of the figure shows results when the container contains only a few particles (50). The bottom row visualizes the results for many
particles (200). The left column shows the results for the *mug*, the right for the *bottle*. Looking at the results, it can be observed that the size of a container’s opening (*mug* vs. *bottle*) has a dramatic effect on amount of particles that are poured onto the pancake maker. Additionally, the type of the container has also a noticeable effect on the continuity of the function describing the amount of pancake mix. The discontinuity results from the fact that the opening of the bottle occasionally got clogged up. Further, it can be noted that a different fill level (*few* vs. *many*) has more impact on the *bottle* than on the *mug*. In general, it can be seen that the pouring angle is more important for controlling the amount of pancake mix than the *time*.

As we have discussed some of the quantitative results, we now proceed by explaining how we learn the qualitative models.

Whenever it is desirable to describe quantitative measurements by qualitative concepts one has to find an appropriate mapping between both. For example, if we want to distinguish between three different sizes of pancakes, namely *Small*, *Medium* and *Large*, we have to provide a mapping that relates, for example, each size to a certain number of particles. Such a mapping can either be based on thresholds or it can be learned.

We have chosen a decision tree for the classification of pancake sizes. Although decision trees are rather simple models, they have the advantage that they are interpretable. For learning the size of a pancake we used Weka’s *J48* algorithm [Hall et al., 2009] in its default parameterization. The resulting decision tree is visualized in Figure 21. Overall, the learned model achieves an accuracy of 92.41%. That is, out of the 474 instances used for learning, 438 are classified correctly within the 10-fold cross-validation. The most decisive attribute is the fill level (particles). If there are only a few particles available, the robot can only make small pancakes. In case of many particles, the size of the pancake depends first on the type of container, and second on the tilting angle. Only if the container is a bottle with a small opening and the pouring angle is high, the robot can make pancakes of different sizes by varying the pouring duration (time). The confusion matrix in Table 7 shows that mainly pancakes of medium size were misclassified.

In a second experiment we learn an action model for predicting the pouring angle. Again, we used Weka’s *J48*
algorithm for learning. The learned decision tree, depicted in Figure 22, achieves an accuracy of 64.35\% in the 10-fold cross-validation. Given a desired size of a pancake and a context determined by the container’s type and its fill level, the robot can infer an appropriate angle. As the confusion matrix in Table 8 shows, mainly the mid angles are misclassified.

5.3. Flipping a Pancake

The third experiment also follows the making a pancake scenario. We investigated the problem of flipping a half-baked deformable pancake using a spatula at different angles.

The simulation model used in this scenario is built out of small spherical particles connected by flexible joints. This enables the model to have the behavior of a soft deformable body (Figure 24). During this scenario, the simulated PR2 robot uses a spatula to flip a pancake on the pancake maker. The parameter of interest in this case is the angle of the spatula. The qualitative results of the experiments performed in this scenario are shown in Table 9. The experiments were launched using the following query:

?- param_space(flip_pancake,ParamSpace),
Table 8: Confusion matrix for classifying the pouring angle.

<table>
<thead>
<tr>
<th>Class</th>
<th>High</th>
<th>Mid</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>158</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Mid</td>
<td>100</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Low</td>
<td>30</td>
<td>0</td>
<td>137</td>
</tr>
</tbody>
</table>

Figure 21: Decision tree for predicting the size of a pancake. The size is discretized in three classes, namely Small, Medium, and Large. The tree is learned from 474 instances and classifies 438 instances correctly (92.41%) and 36 incorrectly (7.59%).
The following Prolog query was used to evaluate whether the flipping action was successful or not:

?- holds_tt(on(pancake,pancake_maker),I1,TL),
 occurs_tt(flip(pancake),I2,TL),
 holds_tt(on(pancake,pancake_maker),I3,TL),
 overlaps(I1,I2),
 overlaps(I2,I3).

That is, the pancake has to be on the pancake maker before and after the flipping action. In the query above, we used the overlaps relations as the temporal relation between the fluents and the flipping action. In general, all 13 possible temporal relations between time intervals can be used to constrain the query [Allen (1983)]. A detailed explanation of the on relation itself has already been given in Section 3.6. Figure 23 visualizes the temporal relations between the on fluent and the flipping action.

Pouring and flipping experiments can be combined by using the poured particles that end up on the pancake maker for generating a more complex pancake model. We start at the particle closest to the center of the cluster and create a graph-like flexible joint structure. Joints are created between the seed particle and the particles found within a certain

Table 9: Qualitative results: Flipping a pancake.

<table>
<thead>
<tr>
<th>angle</th>
<th>0.1</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
</tr>
</tbody>
</table>

Figure 22: Decision tree for selecting an angle. The angle is discretized in three classes, namely Low, Mid, and High. The tree is learned from 474 instances and classifies 305 instances correctly (64.35%) and 169 incorrectly (35.65%).
radius from it, and afterward these new particles become seeds themselves. To make the pancake model look more realistic, a flexible textured mesh created from the convex hull is attached to the structure (Figure 24). Note that a query such as the one above that was used to find flipping events across timelines, can also be used to determine the objects the pancake is on top of. For example, during the execution of the flipping action, the pancake would be on a blade, which is a part of the spatula object.

Overall, such logical queries allow us to select and filter data of logged simulations at an abstract/semantic level. This is a distinct feature of the explicit logical abstractions developed in this work over implicit models that can be learned through Reinforcement Learning and those that can be optimized using methods from Control Theory. This is not to say, that our models would perform better than models from other fields or should replace them. On the contrary, the presented methods should complement approaches from the other fields as they have the advantage that they are interpretable and thereby allow robots to reason about the physical effects of their actions. In particular, robots can employ the qualitative information about physical aspects of their manipulation actions to answer questions in the following contexts:

Monitoring What is the expected outcome of an action?

Planning Which action will lead to the intended goal?

Diagnosis What has caused something to happen?

Question Answering Why has an action being performed?

Reinforcement Learning How to explore the parameter space of an action effectively?

This incomplete list of contexts and queries illustrates where the developed framework and learned models can be employed in order to adjust the behavior and to improve the overall performance of robots. Hence, we believe that the underlying idea and the developed methods of this work can have a broad impact in field of robotics.

6. Discussion

In this section, we discuss why autonomous robots should be endowed with methods allowing them to make temporal projections about naive physics problems. We provide arguments to base these methods on detailed physical simulations and elaborate on the right fidelity of these simulations. Furthermore, we outline how this approach of logic programming using a simulation-based temporal projection can be used to adjust the behavior of robots. Finally, we examine how far the proposed approach can be taken, and also name some possible application scenarios.

One might argue that most robotic applications are developed for specialized tasks and thereby robots do not need robust commonsense reasoning capabilities, or as we propose, capabilities for naive physics reasoning. But in the context of autonomous personal robots, the set of everyday manipulation tasks is not fixed, and furthermore, task and environment conditions change all the time and therefore robots need flexible mechanisms to reason about the appropriate parameters of their control programs.

In the literature there exist some approaches using symbolic reasoning methods for making inferences about simple physical problems [Lifschitz 1998, Morgenstern 2001]. The main limitations of these approaches especially in the context of robotics are threefold: (a) important details such as positions of manipulators and objects are abstracted...
away; (b) variants of problems such as manipulating an object with different physical properties cannot be handled
without extending the logical theory; and (c) consequences of concurrent actions and events are very difficult to
foresee with pure symbolic reasoning, e.g., what does a robot see when turning its camera while navigating through
its environment? All of these limitations do not occur in physics-based simulators. Even if the simulation do not
reflect the physical world, parameters can be learned by applying machine learning technologies as in (Johnston and
Williams 2009).

One important issue when using high-fidelity physics models in simulations is performance. Currently, the system
cannot make predictions in a reasonable time that would allow us to use it for planning during execution. Nevertheless,
it is a powerful tool for robots to mentally simulate (offline) the consequences of their own actions either to prepare
themselves for new tasks or to reconsider task failures.

Related to the issue of performance is the issue of the right fidelity, i.e., how to make the physical models robust
each other effective behavior and yet small enough to be usable during execution. When creating physical
models we are concerned about getting the qualitative behavior of objects right, i.e., we are not aiming at models
that reflect every sheer detail. Very detailed models do not readily provide the information needed to choose the
appropriate action parametrization, therefore we abstract the reality into a smaller qualitative state space.

Although it would be desirable to use the presented approach for planning during execution by using more realistic
physical models, we are currently not aiming at both, high performance and very realistic models. Rather the develop-
aped system represents a proof-of-concept of how to use simulation technologies for symbolic reasoning. In the long
run, we assume that issues regarding performance and the appropriate fidelity of physical models will be addressed
by the game and animation industry (e.g. (Cho et al. 2007)), which will provide powerful technologies that could be
employed.

The realized logic programming framework allows robots and programmers to automatically determine the appro-
appropriate action parameters by setting up a manipulation scenario, by executing differently parametrized control programs in simulation, and finally, by evaluating queries based on the resulting timelines. An interface to the logic programming framework is provided by both Prolog's command-line and a ROS service, which takes arbitrary Prolog queries as request and provides the respective variable bindings as response. Thereby, naive physics reasoning for manipulation tasks can be flexibly integrated into control programs and planners in order to effectively change the robot's behavior as outlined by the example given in Section 1.3.

Finally, we want to approach the question of how far this approach can or should be taken, before we point to some potential application scenarios. It is clear that one would not want to do this kind of full-fidelity physics simulation for all kinds of problems, e.g., problems in motion planning can be solved by employing more specific planners as primitives. However, some kind of limited simulation seems to be very plausible, at least for some very hard problems. We believe that lifting physics-based simulations to a symbolic level is beneficial for deriving solutions for robot manipulation, and also other domains, where current methods are not effective.

Planning is increasingly considering physical platforms in complex, real world environments. The presented framework could provide a more precise guidance in the planning process since the simulation-based methods for making temporal projections are tightly linked to the technical details of platforms under question. Naive physics reasoning could also be used as a tool for developing robot control programs. Programmers could recognize and prevent problems from occurring during execution more easily. Additionally, the presented framework could be used for benchmarking purposes. For example, data generated by the simulations could serve as basis for inference tasks. Thereby, different approaches to physical reasoning could be compared in a straightforward way. In general, the usage of the open source software such as Gazebo and ROS allow to employ the naive physics reasoning to new problems including other robot platforms and different objects quite easily. Therefore we believe that logic programming using detailed physical simulations is a well-suited tool for making predictions about every manipulation tasks and also for other potential applications.

7. Conclusions

In this paper, we presented a framework for envisioning the effects of everyday robot manipulation actions using physics-based simulations.

Within this framework, we designed and implemented components for asserting the initial conditions of a manipulation scenario and for utilizing a simulation-based approach for making temporal projections about parameterized robot control programs. We conducted experiments for three scenarios, namely stirring pancake mix, pouring pancake mix, and flipping a pancake, in which formal parameters of robot control programs were systematically selected from ranges of possible values. These experiments, or more precisely their resulting timelines, were evaluated with respect to specified performance criteria, e.g., desired and undesired effects. In the discussion section, we explained the demand of equipping robots with means of naive physics reasoning and provided arguments for basing this reasoning on detailed physical simulations. Furthermore, we also pointed to potential applications.

In future work, we will continue our research on how we can extract information from human demonstrations performed in a virtual manipulation environment to automatically determine the parameter space of robot manipulation actions from timelines (Kunze et al., 2013). Furthermore, to cope with the uncertainty inherent in robot manipulation tasks we will extend our approach by integrating probabilistic representations over timelines as briefly outlined in Section 3.1. Finally, we will also integrate our system with a real robot system.

We believe that the presented framework provides an important functionality for robots by giving them the ability to autonomously determine the action parameterizations for unspecified and ambiguous instructions by the means of logic programs using simulation-based temporal projections.

Acknowledgments

We would like to thank our colleagues Mihai Emanuel Dolha, Emitza Guzman, Andrei Haidu and Reinhard Klapfer for their help.

12http://www.ros.org
This work has been supported by the EU FP7 Project RoboHow (grant number 288533). Additionally, it was partly funded by the CoTeSys cluster of excellence (Cognition for Technical Systems, http://www.cotesys.org), part of the Excellence Initiative of the German Research Foundation (DFG).

References

