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OPEN-EASE —
A Knowledge Processing Service for Robots and Robotics/AI Researchers

Michael Beetz1, Moritz Tenorth1 and Jan Winkler
{ beetz, tenorth, winkler }@cs.uni-bremen.de

Abstract— Making future autonomous robots capable of
accomplishing human-scale manipulation tasks requires us to
equip them with knowledge and reasoning mechanisms. We
propose OPEN-EASE, a remote knowledge representation and
processing service that aims at facilitating these capabilities.
OPEN-EASE provides its users with unprecedented access to
knowledge of leading-edge autonomous robotic agents. It also
provides the representational infrastructure to make inhomo-
geneous experience data from robots and human manipulation
episodes semantically accessible, as well as a suite of software
tools that enable researchers and robots to interpret, analyze,
visualize, and learn from the experience data. Using OPEN-
EASE users can retrieve the memorized experiences of manip-
ulation episodes and ask queries regarding to what the robot
saw, reasoned, and did as well as how the robot did it, why,
and what effects it caused.

I. INTRODUCTION

Within the next years autonomous mobile manipulation
robots will be increasingly requested to accomplish human-
scale manipulation tasks: autonomous warehouse robots will
be asked to fetch the items on a given order list and pack
them into a box, and household robots will be tasked to
clean the table and unload the dishwasher [1], [2]. It is the
nature of such human-scale manipulation tasks that they are
incompletely specified and that they require reasoning from
background knowledge to be accomplished successfully.
Warehouse robots have to infer how to grasp, handle, and
place the objects they are to collect and pack. They also
have to reason about whether to pad the items, wrap them,
and possibly even about how the center of mass of the box
might change by packing it in different ways. When cleaning
a table, the robot has to reason about the state of objects,
whether they are clean or dirty, filled or empty, and handle
them accordingly.

Different experimental autonomous robot control systems
have been proposed that enable robots to accomplish such
tasks by employing knowledge- and reasoning-enabled con-
trol, e.g. [3], [4], [5], [6]. However, equipping autonomous
robots with comprehensive knowledge and the corresponding
reasoning capabilities is a difficult and tedious programming
task that might require proficiency in AI reasoning methods
and non-standard AI programming languages. For teams not
having a background in this field, the barriers for equipping
their robots with “intelligent” problem-solving capabilities
are often very high.

1 Author names in alphabetical order. All authors are with the Institute
for Artificial Intelligence and the TZI (Center for Computing Technologies),
University of Bremen, Germany.

We propose OPEN-EASE1, a remote knowledge repre-
sentation and processing service that aims at facilitating the
use of Artificial Intelligence technology for equipping robots
with knowledge and reasoning capabilities. OPEN-EASE
provides its users with unprecedented access to knowledge of
leading-edge autonomous robotic agents performing human-
scale manipulation tasks. It includes

1) knowledge about the robot’s hardware, its capabilities,
its environment and the objects it manipulates;

2) memorized experiences of manipulation episodes that
allow to reason about what the robot saw, reasoned, and
did, how it did that, why, and what effects it caused; and

3) knowledge obtained from training episodes in which
humans demonstrate skills that the robot can learn from.

This information can be retrieved by queries formulated
in PROLOG, a general-purpose logic programming language.
The system can be used both by humans via a web-based
graphical interface, or by robots that use OPEN-EASE as
a cloud-based knowledge base via a webservice API. This
way, they can query and use OPEN-EASE’s background
knowledge to provide semantic meaning to their sensor data
and to the data structures used for control purposes. We plan
to extend the system to let robots upload their own data
structures and execution log files, to declare their elements
as PROLOG rules, and thereby convert their data files into
virtual OPEN-EASE knowledge bases.

OPEN-EASE can also be viewed as a software tool and
web service to promote open research in the domain of AI-
enabled autonomous robot manipulation. After entering the
website http://www.open-ease.org, researchers have complete
access to comprehensive data sets of robots performing fetch-
and-carry tasks, as well as data sets of humans demonstrating
how some of these tasks are to be performed. The data
sets come with a standardized semantic retrieval language
that provides full access to all data and enables researchers
to combine different sources of information. Sophisticated
software tools enable researchers to visualize and analyze
data through a web-based interface. Using OPEN-EASE,
researchers in machine learning will be able to create realistic
and highly relevant robot learning problems. Researchers in
computer vision will be able to turn real perception tasks and
the corresponding sensor data into benchmark problems.

Our efforts in developing OPEN-EASE and making it
publicly available can be considered to be in the spirit
of Nielsen’s vision of “Reinventing Discovery” [7], which

1EASE is the abbreviation of Everyday Activity Science and Engineering.
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Fig. 1. Web interface of OPEN-EASE.

promotes new ways of conducting research more effectively
through the cooperation facilities provided by modern Inter-
net technology. Inspiring blue prints for such web services
that promote open research in other domains include the
Allen Human Brain Atlas [8] and the HapMap project [9]
which enables networked science in human genome research.

The scientific and technical contributions of the paper are
the (1) comprehensiveness with which real execution data of
modern autonomous manipulation robots is logged, stored
and made openly accessible to the research community;
(2) the representational infrastructure that is provided to
make very inhomogeneous experience data from different
robots and even human manipulation episodes semantically
accessible in a uniform and standardized concept vocabulary;
and (3) a suite of software tools that enable researchers and
robots to interpret, analyze, visualize, and learn from the
experience data.

The remainder of the paper is organized as follows. We
start with a description of OPEN-EASE from a user perspec-
tive. Then, we give an overview of the functional components
of OPEN-EASE. We will then detail the implementation of
OPEN-EASE and some exemplary use cases. We end with
outlining some projected applications, a discussion of related
work, and our conclusions.

II. A GLIMPSE AT OPEN-EASE

To the human user, OPEN-EASE presents itself through
the web-based interface depicted in Figure 1. The web
interface includes panes with different purposes. The Prolog
interaction pane (1) allows the user to type Prolog queries
and commands and to see the answers to these queries. A
list of prepared queries with English translation is provided
in the query list pane (2). The 3D display pane (3) can
visualize the robot and its environment. Other information
such as trajectories, robot and object poses can be added and
highlighted. The belief pane (3) enables the user to inspect
the internal data structures of the robot’s beliefs including
object, action, and location descriptions used by the robot.
Finally, there is the image pane (4) for displaying images
captured by the robot’s camera, and the visual analytics pane
(5) which can visualize statistical data as bar charts and pie
charts.

startTime
endTime

UIMAPerception_oS8i
detectedObj PancakeMix_okhs

ArmMovement_nJwX
taskContext GRASP
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Fig. 2. Time interval view of the log data of a grasping action.

The conceptual view that OPEN-EASE imposes on the log
data of manipulation activity episodes is that of a first-order
time interval logic [10], [11], [12] as shown in Figure 2,
sometimes also referred to as a “chronicle representation”
[13]. Time intervals are specified through time instants at
their start and end. These are linked to the corresponding
Unix time stamps, which allows synchronization with other
recorded data such as captured images and robot poses.
Events, such as a reaching motion, occur over time intervals.
Actions are considered to be events that are caused by an
agent to achieve some goal. Occasions, representing for
instance the state of an object being at some location, hold
over time intervals. Instantaneous events and continuous
states occur at a time instant ti, which is a time interval with
the duration 0. As an example, consider the time chronicle
representation of a fetch-and-place task depicted in Figure 2.
The figure includes the events that occur during the episode
that are asserted in the representation language through a set
of facts including the following ones:

o c c u r s ( ’ ArmMovement nJwX ’ , [ t6 , t 8 ] ) .
t a s k t y p e ( ’ ArmMovement nJwX ’ , ’ G r a s p i n g ’ ) .
o b j e c t a c t e d o n ( ’ ArmMovement nJwX ’ , ’ PancakeMix okhs ’ ) .
c a t e g o r y ( ’ PancakeMix okhs ’ , ’ PancakeMix ’ ) .
b e l i e f a t ( r o b o t ( ’ p r 2 b a s e ’ , ’ Pose 423 ’ ) , t 7 ) .
o c c u r s ( ’ UIMAPercep t ion oS8i ’ , t 2 ) .
c a t e g o r y ( ’ UIMAPercep t ion oS8i ’ , ’ O b j e c t D e t e c t e d ’ ) .
. . .

This representation allows us to ask sophisticated queries
that combine information from these logical facts with con-
tinuous and geometric aspects such as robot poses in three-
dimensional space. We can for instance query for a task Tsk
with the goal of grasping an object of type cup, and retrieve
the pose Pose of the robot in terms of global map coordinates
’/map’ at the end time point End of the grasping action. This
query is answered based on the logged experience data; its
result is depicted in Figure 3 (left).
? - t a s k g o a l ( Tsk , [ an , a c t i o n ,

[ type , g r a s p ] ,
[ o b j e c t a c t e d o n , [ an , o b j e c t ,

[ type , cup ] ] ] ] ) ,
t a s k e n d ( Tsk , End ) ,
r o b o t p o s e a t t i m e ( ’PR2 ’ , ’ / map ’ , End , Pose ) .

In addition to queries for single time points, we can also
retrieve trajectories of arbitrary parts of the robot while



Fig. 3. Visual results of queries on logged robot experiences.

performing an action. That is, we first retrieve the time
interval between St and End, which denote the beginning
and the end of the grasping action, read which gripper was
used for that action from the log data, and add the trajectory
between these times to the visualization:
? - t a s k g o a l ( Tsk , [ an , a c t i o n [ type , g r a s p ] ] ) ,

t a s k o u t c o m e ( Tsk , s u c c e s s ) ,
t a s k s t a r t ( Act , S t ) ,
t a s k e n d ( Act , End ) ,
t a s k u s e d g r i p p e r ( Act , Grp ) ,
a d d t r a j e c t o r y ( Grp , St , End ) .

Queries are not limited to the logged experience data,
but may also include general background knowledge. The
following two queries use the robot model to highlight
components connected to the left arm (in red) and all cameras
of the robot (in blue), respectively. The results are also shown
in the figures above.
? - sub component ( p r2 : p r 2 l e f t a r m , Sub ) ,

h i g h l i g h t o b j e c t ( Sub ) .

? - o w l i n d i v i d u a l o f (Cam , s r d l 2 : ’ Camera ’ ) ,
h i g h l i g h t o b j e c t (Cam ) .

III. OVERVIEW OF OPEN-EASE

OPEN-EASE can be considered as a huge, remotely
accessible knowledge service that consists of

1) a big-data database storing comprehensive data about
episodes in which humans and robots perform complex
manipulation tasks;

2) an ontology, i.e. an encyclopedic knowledge base, that
provides a conceptual model of manipulation activities;

3) and software tools for querying, visualizing, and ana-
lyzing the manipulation task episodes.

A. Databases of Manipulation Episodes

The data provided by OPEN-EASE comprises (◦) “raw”
sensor data and the results of their interpretation by the robot,
(◦) logged robot behavior including pose data, (◦) the robots’
plans and their interpretation, (◦) a structured, semantically
labeled environment model, and (◦) objects and their poses in
the scene. Logged plan interpretation data, the environment
model and object detections are represented in the Web
Ontology Language OWL [14]. This representation can be
loaded into the knowledge base and is available for reasoning
using temporal logics as described in the next section. Sensor
data and robot pose data, however, are usually of much
higher volume, and storing them in OWL would lead to

Fig. 5. Upper concept taxonomy used in OPEN-EASE.

significant overhead. These kinds of data are therefore stored
in MongoDB [15], an efficient schema-less, high-volume
database. The data can be accessed from the knowledge
base by special predicates that, using procedural attachments,
transparently load the required information and relate it to
the semantic model. This approach enables OPEN-EASE to
reconstruct the state of the robot including its pose and the
computational state of the plan interpretation at any time.
In addition, all images that have been used for perception
tasks are stored, together with the results that the perception
algorithms computed and the poses of all objects that are
relevant for the manipulation tasks.

B. OPEN-EASE Concept Vocabulary

OPEN-EASE provides standardized semantic access to the
database described in the previous subsection. The approach
combines an ontology, which defines a conceptual model
of manipulation activities, with a set of query predicates
for reasoning about this conceptual model. The KNOWROB
ontology [16] that is used by OPEN-EASE and depicted
in Figure 5 defines events and temporal things, actions,
spatial things including objects, stuff, and agents, as well as
mathematical concepts as its main concepts. The complete
taxonomy counts about 8.000 classes, including about 130
action classes, 7000 object types and 150 robot-specific
concepts, that can be described by over 300 kinds of prop-
erties. The concepts are defined through a set of assertions
and rules that apply to them. Object types can further be
described by models of their geometry and their composition
from functional components. Figure 6 exemplarily shows
some of the concept knowledge about a bottle of pancake
mix, including the functional parts it consists of, its usage,
geometry, etc. These kinds of models can be generated
automatically from common 3D models as they can be found
in public database in the Internet [17].

These concepts are used by a set of provided predicates
for representing and reasoning about robot activity episodes,



Predicates on occasions, beliefs, and events Predicates on plans and plan interpretation
holds(Occ,Ti) The occasion (fluent) Occ holds task(Tsk) Tasks on the interpretation stack

in the time interval Ti task type(Tsk, Type) Type of this task element
belief at(Occ,Ti) The robot believes at Ti that task goal(Tsk, G) Goal of task

the occasion Occ holds at Ti task start(Tsk,Ti) Start time of task
occurs(Ev, Ti) Event Ev occurs in time interval Ti task end(Tsk,Ti) End time of task

Occasion types task used gripper(Tsk, Grp) Gripper that has been used for a Tsk
loc(Obj, Loc) Location of an object subtask(Tsk,Sub) Task is a parent of Subtask
object visible(Obj) Object is visible to the robot subtask+(Tsk,Sub) Task is an ancestor of Subtask
robot(Part,Loc) Location of the robot part Part task outcome(Tsk,Res) Result of task (success or fail)

Event types task failure(Task,Failure) Failure of a task
object perceived(Obj) Object has been perceived failure type(Failure,Type) Type of failure
image captured(Img) Image has been captured failure attribute(Failure, Name, Val) Failure attribute (e.g. error message)

Object descriptions
desig type(Desig,Tp) Type of designator
desig prop(Desig,Prop,Val) Property values of designator
desig pose(Desig,Pose) Pose of perceived object designator
matches(Desig,Descr) Match designator to description

Fig. 4. Predicates for reasoning about the memorized experiences.

PancakeMix_okhs
type: knowrob:'PancakeMix'
linkToCADmodel: pancake-mix.dae
properPhysicalParts: 'BottleCap463'
properPhysicalParts: 'Container461'

BottleCap463
type: knowrob:'Cylinder'
type: knowrob:'Handle'
radius: 1.96, 'cm'
length: 0.8, 'cm'

Container461
type: knowrob:'Cylinder'
type: knowrob:'Handle'
type: knowrob:'Container'
volume: 500, 'ml'

Fig. 6. Conceptual knowledge about a bottle of pancake mix.

the most important of which are listed in Figure 4. They
are thematically grouped into predicates about occasions
(states), beliefs, and events; predicates about plans and plan
interpretation (tasks); event types; occasion types; and object
descriptions. While these predicates provide the user with a
uniform, logical view on the data, they may be computed at
query time from different information sources. We call this
concept a “virtual knowledge base” that is created on top of
the semi-structured (and often high-volume) log data [18].
This way, data from these sources (e.g. robot poses) can
easily be combined with symbolic information in the same
query.

The predicates holds, believes at, and occurs represent
different aspects of a changing world state: holds(Occ,Ti)
is true iff the occasion type Occ is true throughout the time
interval Ti. Occasions (also called fluents [19], [20]) repre-
sent time-varying states of the world such as the locations
of objects. Formally, an occasion is a functional term in
logic that maps an occasion type such as empty(cup-23)
into the time intervals in which cup-23 was empty. Thus,
the assertion holds(empty(cup-23),t-46) is true if t-46 is a
sub-interval of a time interval in which the cup was empty.
The predicate believes at(Occ,Ti) is similar to holds(Occ,Ti),
with the difference that believes at represents a belief of
the robot rather than the true world state. Typically, we
distinguish between holds and believes at only if we have
external devices for observing manipulation episodes that

can provide us with ground truth data, and return identical
values otherwise. The predicate occurs(Ev,T) states that event
Ev occurs throughout the time interval T. For example, the
assertion occurs(contact-13,t-31) states that the contact event
contact-13 has occurred in the time interval t-31.

Manipulation episodes do not only represent how the
world changes during a manipulation episode but also the
process of plan interpretation. In this context, we mean by
a task tsk (assertion: task(Tsk) the intention of the robot to
execute a piece of the control program Exp. The tasks that
a robot generates when executing its plan are organized in a
hierarchical task network (because plan steps can be executed
concurrently). The task hierarchies are represented through
the predicate subtask(tsk1,tsk) stating that tsk1 is a subtask of
task tsk. Thus, if we are interested how a task was executed,
we have to explore the subtask relations. If we want to infer
why a task got executed, we have to analyze its super tasks.

As the execution of a plan is a feedback loop between
the robot and the environment, we need to represent the
interaction between both. The first means of interaction are
sensory events, such as capturing an image and interpreting
it. Whenever the camera driver gets the command to capture
an image, an event of the form occurs(image captured(i), T)
is automatically asserted, and the corresponding image is
stored as an effect of the event.

Another important part of the experience memory are
the object descriptions that the robot uses to manipulate
objects which we call “designators”. In the beginning, these
descriptions might be abstract such as “the green cup on the
kitchen counter”. While the robot searches for and finds the
cup, this abstract description will be updated with the data
extracted from captured images: the exact pose of the cup,
its size, a bounding box, and so on. The parameterization
of reaching and grasping actions heavily depends on the
respective descriptions of the objects to be manipulated.
Information about the content of designators can be re-
trieved using the occasions desig pose and desig attribute.
A snapshot of these descriptions is stored whenever they are
updated, allowing the system to reason about the evolution
of the robot’s belief over time by comparing the descriptions



before and after an action. The differences are usually
those attributes that can be inferred from perception, such
as the pose and size of the object. OPEN-EASE provides
the occasion matches(Desig,Descr) to reason about object
descriptions Descr and whether or not the robot believes
that they are satisfied by objects in the world (Desig). The
logical expression believes at(matches(Desig, [an, object,
[type, cup], [color, red]]), t) is true for every object description
Desig that the robot believes to represent a red cup.

This logical query language is complemented by a set of
predicates for loading and reasoning about lower-level data
and for visualizing the results of queries. When dealing with
geometric information that changes over time, sophisticated
methods for transforming poses between coordinate frames
are required. We extended the widely-used tf library in ROS
to operate upon the database of logged data, offering the
same interface that is used for runtime operation.

C. Software Tools for Recording, Querying, Visualizing, and
Analyzing Episodes

The OPEN-EASE system comes with a suite of software
tools for logging data from robot manipulation episodes,
for reasoning about them, and for visualizing the results.
Our robots perform their tasks under the supervision of the
CRAM executive [21] that automatically records compre-
hensive log data as described in [18]. While our approach
is not limited to robots running CRAM, the data produced
by CRAM is much more comprehensive and semantically
rich than logs of other executives such as SMACH [22]. The
system, including the query-answering modules and the web
interface, can either be used as a hosted cloud service, or be
downloaded as open-source software2 and installed locally.

IV. IMPLEMENTATION — KNOWROBS

The OPEN-EASE system has been implemented in a
cloud-based version of the KNOWROB robot knowledge
base [16]. KNOWROB provides expressive representations
and sophisticated reasoning methods that are tailored to the
needs of autonomous robots. Low-level data from robot and
human activities are logged into a “big data” database using
an extension of the mongodb log tool [23]. The methods
for recording and reasoning about higher-level experience
data are based on our prior work [18]. The communication
between the browser and the ROS system in the cloud, as
well as many of the graphical elements in the query frontend,
have been built using the robotwebtools framework [24].

OPEN-EASE has to fulfill an important technical require-
ment, namely to equip each user with her own individual
knowledge base. This is necessary because users have to load
and unload knowledge bases from their own and common
repositories to perform their experiments, and will also assert
additional facts and rules to work with the knowledge base.
This capability is provided by KNOWROBS, a Software-as-a-
Service cloud application which offers KNOWROB function-
ality to remote users that can connect to a WebSocket [25] us-
ing the rosbridge [26] protocol. Web sockets are supported by

2Installation instructions: http://knowrob.org/doc/docker

most modern browsers, but can also easily be implemented
as part of a client application on a robot. KNOWROBS
uses the highly efficient virtualization techniques of the
Docker framework3 to create separate virtual knowledge
bases for each user. Instead of emulating a computer’s
hardware, Docker isolates processes that still run on the same
Linux kernel w.r.t. processes, memory and storage resources,
computing time, network interfaces, user rights etc. These
capabilities allow us to provide individual knowledge bases
to different users without prohibitive usage of memory and
computing resources.

webrob
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ROS node
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Fig. 7. Structure of the proposed system. Each user has a private knowledge
base container, but can transparently access shared datasets of robot data.

Figure 7 visualizes the architecture of the KNOWROBS
system. The web-based frontend manages the different con-
tainers and assigns them to users once they log into the
system. Each user gets one container with a complete
KNOWROB system, plus a container for persistent data
storage. In addition, we have containers that are shared
among all users, such as a common database with logged
high-volume robot data and a common repository of memory
episodes.

V. USE CASES

All of the following use cases have been realized using
the same approach. 1) A computer system is generating or
observing manipulation activities. 2) The system is extended
through a “big-data” logging mechanism that logs high-
volume and in particular subsymbolic system state data as
comprehensively as possible without slowing down the sys-
tem operation. 3) The logged data are symbolically annotated
and interpreted as instances of the symbolic concepts in the
KNOWROB taxonomy such that they can be semantically in-
dexed. 4) We can then use the Prolog language together with
the predicates listed in Figure 4 to reason about manipulation
episodes and answer queries about them.

A. Working with Robot Manipulation Episodes

The combination of a powerful representation and logic-
based query language with comprehensive geometric infor-
mation enables robots to reconstruct the state of the world

3https://www.docker.com/



as the robot believed it to be at a semantically described
point in time, for example at the moment when grasping
a cup (Figure 8 left). This allows the a-posteriori analysis
of failure situations, which can be very helpful in case of
incidental problems that are very difficult to trace otherwise.
By testing new algorithms on the logged sensor data, one
could test whether they would have performed better in that
respective situation. By setting up a simulator with the logged
world state, one could even combine these perception results
with (simulated) robot actions.

Fig. 8. Example use case of reading subsymbolic information on poses and
trajectories based on logical queries. Both robot log data and observations
of human actions can be queried in the same way.

B. Working with Human Demonstration Episodes

The same queries that can be answered on logged robot
experiences can also be answered based on observations of
human activities (Figure 8 right). The obvious restriction is
that information about the plans and intentions of the human
is not available, but only the external observation of the
resulting behavior. If we annotate the observations, either
manually or using automated activity recognition methods,
we can use the same methods for semantic retrieval of
observed data that could e.g. help with selecting data for
analysis or learning purposes.

C. Working with Collections of Episodes

Having not only one, but a collection of episodes allows
to compute statistical information that can be used for
evaluation of the robot’s performance, but also for learning
prediction models. This helps to answer questions such
as how long actions take on average, how reliable they
are, and which failures occur most frequently. Figure 9
shows two examples: The majority of the errors is of type
ManipulationPoseUnreachable, as can be seen in the chart on
the left, which suggests that improvements of this component
can have a strong impact on the overall performance. The
average duration of tasks, shown in the chart on the right,
gives robots and humans information on how long actions
typically take, e.g. for scheduling purposes.

D. Robots Using OPEN-EASE

While we present the results of queries as graphical
visualizations in the web-based query frontend, the same
interface can be used by robots to send queries to a
KNOWROBinstance in the cloud. In a local ROS setup, robots
send Prolog queries to KNOWROBusing the JSON format

Fig. 9. Statistics computed from 25 manipulation episodes. Left: Distri-
bution of failure types. Right: Average duration of common subtasks.

via the json prolog service. KNOWROBS provides the same
interface, tunneled via a websocket connection.

VI. PROJECTED APPLICATIONS

Besides being a potentially powerful remote knowl-
edge processing service for AI/robotics researchers and
autonomous robots, we currently investigate a number of
possibly high-impact applications of KNOWROBS, namely
using KNOWROBS for realizing

1) an eLearning tool in AI-based robotics. We are
using OPEN-EASE as a web tool for teaching a course in
intelligent robotics. In this course we use OPEN-EASE for
letting students explore the hardware of robots, their sensors
and effectors, for letting students get better intuitions about
the data that sensors generate (“Can you detect the handles
of cups using images where the camera is positioned at least
1,5m away from the cup?”, or “Which objects or object
parts in the kitchen environment cannot be detected with
the Kinect sensor of the robot?”). In addition, we let the
students do students exercises with real robot data, such as
learning object classifiers for the objects that stand on the
kitchen counter during a set of manipulation episodes.

2) a tool for reproducible experimental data. OPEN-
EASE improves the reproducibility of experimental data.
Consider the case where an experimental evaluation of a
scientific publication has to be extended after some time.
Rerunning the experiments is tedious and time consuming
and requires a similar hardware setup. The comprehensive
log data collected and the semantic retrieval facilities sup-
ports researchers to add missing evaluations on the existing
experimental data. Researchers can even give reviewers and
readers access to the data through OPEN-EASE, which
allows reviewers to clarify questions regarding the experi-
mental setting (e.g. where the robot stood when the object
recognition mechanisms succeeded, or in which scenes an
object could not be recognized).

3) a tool for open robotics research. Recently progress
in many research fields has been fueled by making large
volumes of data available and by running data and in-
formation analytics tools on them, or by simply visually
browsing and searching through these data. Examples of such
initiatives are the Allen Brain Atlas, geographic data, etc.
OPEN-EASE currently provides data from robotic agents
performing fetch and place tasks in a kitchen environment,
users demonstrating pancake making in a virtual reality



game, people setting the table and cleaning up (from the
TUM kitchen dataset [27]). We plan to include experience
data from robotic agents performing chemical experiments,
human-robot cooperation, and others. This makes OPEN-
EASE one of the most comprehensive and detailed activity
knowledge bases relevant for autonomous robotics research.

3) a tool for creating realistic benchmark problems for
machine learning and robot perception. Another possible
usage of OPEN-EASE is the creation of realistic benchmark
datasets. Consider the case where you want to create a real-
istic set of robot perception tasks in order to test some newly
developed robot perception method. To do so, you could take
characteristic everyday activities such as setting the table
and first query OPEN-EASE for the set of perception tasks
that a robot issues in order to perform such an activity.
This analysis will result in some understanding of which
types of perception tasks are important and which ones not.
We can then generate ground-truth data by finding the time
instant where the robot has the most complete and detailed
information about a specified scene, such as the objects on a
table. If needed, the user can assert additional knowledge or
correct information by retracting and asserting KNOWROB
facts. Finally, the user can make up situations in which the
perception tasks are to be performed.

4) a tool for grounding and assessing the assumptions
and inference mechanisms of action formalizations in
knowledge representation. Most knowledge representation
languages and methods for symbolically reasoning about
actions and change are based on modeling assumptions.
OPEN-EASE gives researchers in these fields the opportu-
nity to test to what extent such assumptions are valid for
autonomous manipulation robots, and to what extent the
inferences performed by these formalisms are valid with
respect to the behavior and the physical effects that robotic
agents generate.

VII. RELATED WORK

OPEN-EASE is positioned in the intersection of intelligent
information systems and remote software services for robots.

In robotics, the Robo Brain4 project led by Saxena and
his colleagues is most closely related to OPEN-EASE.
Robo Brain is a large-scale computational system that learns
from publicly available Internet resources, computer simu-
lations, and real-life robot trials. It accumulates everything
into a comprehensive and interconnected knowledge base.
OPEN-EASE differs from Robo Brain in several aspects.
OPEN-EASE incorporates data from different sources into
a common, formal knowledge representation language with
powerful inference mechanisms. The data are automatically
generated through robots and observation systems rather
than human computation methods. Unlike in the Robo Brain
project, however, which already broadly applies learning to
the data, the learning efforts in OPEN-EASE have not started
yet.

4http://robobrain.me

OPEN-EASE follows up on research that aims at pro-
viding knowledge bases for robots in the world-wide web.
Those research efforts include RoboEarth [28] which inves-
tigates how robots can share their knowledge by providing a
meta representation language for robot plan schemata and
knowledge bases that allows robots to upload, find, and
download available knowledge and for checking whether
they can employ the respective knowledge [28], [29], [30].

OPEN-EASE is a cloud robotics application [31], [32],
[33] that is specialized for providing robots with knowledge.
Other examples of cloud services are Mujin5, providing client
robots with motion planning capabilities and Google goggles
[34] that can retrieve web pages matching captured images.

Webservices are more common in the area of intelligent in-
formation systems. Here, WordNet6, a dictionary knowledge
base, OpenCyc7, an encyclopedic knowledge base, and the
OpenMind and the OpenMind Indoor Common Sense [35]
common-sense knowledge bases are popular examples.

Finally, there are also a number of data repositories for hu-
man manipulation activity data offering relevant data, though
not as formally represented knowledge nor as a ready-to-use
web service. Such data repositories include the TUM kitchen
dataset [27], the MPII Cooking Activities dataset![36], and
the CMU MMAC dataset [37].

VIII. CONCLUSIONS

In this paper we have described and discussed OPEN-
EASE, a remote knowledge representation and processing
service for human researchers and robots. OPEN-EASE
enables its users to interpret, analyze, visualize, and learn
from the experience data from robots and human manipu-
lation episodes. Using OPEN-EASE users can retrieve the
memorized experiences of manipulation episodes and ask
queries regarding to what the robot saw, reasoned, and did as
well as how the robot did it, why, and what effects it caused.

OPEN-EASE is unique because of (1) the comprehensive-
ness with which real execution data of modern autonomous
manipulation robots is logged, stored and made openly ac-
cessible to the research community; (2) the representational
infrastructure that is provided to make very inhomogeneous
experience data from different robots and even human ma-
nipulation episodes semantically accessible in a uniform and
standardized concept vocabulary; and (3) a suite of software
tools that enable researchers and robots to interpret, analyze,
visualize, and learn from the experience data.

Projected applications of OPEN-EASE include its use
an eLearning tool in AI-based robotics, a tool for making
reproducible experimental data accessible and for enabling
semantic information retrieval, and a tool for open robotics
research. OPEN-EASE can be accessed through the web
page http://www.open-ease.org.

5http://mujin.co.jp/en/
6http://wordnetweb.princeton.edu/perl/webwn
7http://sw.opencyc.org/
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