Action Recognition and Interpretation from Virtual Demonstrations

Andrei Haidu

ahaidu@cs.uni-bremen.de

Abstract—To properly perform tasks based on abstract
instructions, autonomous robots need refined reasoning skills
in order to bridge the gap between the ambiguous descriptions
and the comprehensive information needed to execute the
implied actions. In this article, we present an automated
knowledge acquisition system from human executed tasks in
virtual environments, and extend the knowledge processing
system KNOWROB[1] to be capable to reason on the acquired
data. We have set up two scenarios in a physics based simulator:
creating a pancake, and garnishing a pizza dough. Users where
asked to execute these tasks using the provided tools and
ingredients. Using a data processing module we then collect
the low-level data and the relevant abstract events from the
performed episodes. The recorded data is then made available
in a format that robots can understand, by using a symbolic
layer to interconnect the two data types in a seamless way.

I. INTRODUCTION

Humans specify actions vaguely. They use instructions
such as “add milk to the dough”, where the person executing
the instruction need to infer that the he has to pick up a
container containing milk, hold it above the container with
the dough, tilt it until the desired amount of milk is added,
and so on. For an autonomous robot to able execute similar
tasks from such abstract instructions, it needs to be able
to infer this missing information. In Figure 1 we show an
example of a robot reasoning on how to carry out the task of
flipping a pancake. This kind of knowledge that every human
posses is called commonsense and naive physics knowledge
and it is needed by robots in order to carry out actions
in open domains robustly and feasibly. Unfortunately this
knowledge is difficult to state because it is implicit in the
human cognition process. For example, people can show how
to tie their shoes, but have great difficulty describing it.

In our research we aim at mining this knowledge by letting
humans demonstrate such abstract instructions in an interac-
tive physics based simulation using a Game with a Purpose
(GwaP) [2]. Users would be asked to perform in a virtual
reality environment various tasks described using abstract
instructions. They would interact with the environment by
mapping their natural hand movements onto a virtual end
effector in order to manipulate objects, during which the
system records the underlying motions and abstract events.
Extracting the commonsense and naive physics knowledge
requires the recognition of actions in a continuous stream
of world evolution and segmenting them into phases. In
this article we introduce an automated knowledge acquisition

The authors are with the Institute for Artificial Intelligence, Universitit
Bremen, Germany.

This work is supported by the EU FP7 project RoboHow (Grant Agree-
ment Number 288533).

Michael Beetz

beetz@cs.uni-bremen.de

?- occurs(Episodelnst, Eventlnst, Start, End),
trajectory(knowrob:'SpatulaHead', Trajl, ..),
trajectory(knowrob:'Pancake’, Traj2, ..),

[..]

Fig. 1: PR2 querying the knowledge base for a successful
pancake flip (query syntax presented in Section IV)

system from such environments and a KNOWROB extension
to reason on recorded episodes.

In the remainder of the paper we proceed as follows. In
the following section we give a short overview of the system
as a whole. In Section III we introduce the virtual environ-
ment setup and the representation technique of the recorded
episodes in the knowledge base. Section IV describes various
PROLOG queries for reasoning on the data collected from
the two cooking experiments. Section V presents the related
work. We then conclude and present our future work in
Section VI.

II. OVERVIEW

The system architecture is comprised of two main parts:
(1) the virtual environment based on a physics simulator with
its data processing module and (2) the extended knowledge
processing system KNOWROB. Figure 2 visualizes the afore-
mentioned parts.

The first module of the system is the virtual environment.
We set up two different scenarios to interact with. One is a
pancake making world, where users are requested to create
a pancake, this entailing to pour batter from a bottle on the
pancake maker, and then flip the pancake on its ‘un-cooked*
side. A successful execution means that no batter shall be
spilled during pouring and the pancake has to be flipped

f Execute tasks in the | (

virtual environment

Offline processing
of the recorded episodes

'Make a pancake'

(LOg events and raw data ?- occurs(Eplnst, Eventlnst, Start, End),
event_type(EventlInst,
— knowrob:'GraspingSomething')
p—/
acted_on(Eventlinst, g
KnowRob o knowrob:'Cup'), emug
Knowledge base 5 [--] :
&"Virtual knowledge$ § (‘ g |
base" @ ‘
Interface S" 3
o _’
MongoDB @ }j
Recorded raw data

p/

r
—

on its other side without falling off the pancake maker. The
second world represents the pizza making scenario. The user
is presented with a flattened dough, a container with tomato
sauce, and two bowls with toppings. A successful execution
entails pouring the sauce on the dough, spreading it using
the spoon (in both cases spilling should be avoided), and
scattering toppings from the bowls on the dough. For each
scenario the users are presented with abstract instructions
on what they have to do, for example, “make a pancake”,
“flip the pancake”, “add cheese topping to the pizza” etc.
For every recorded episode the manipulated objects were
randomly arranged on the table surface.

Next, the data processing module re-plays the recorded
episodes and extracts in parallel two types of information:
(a) raw data, where for every simulation step the whole
world state is logged. Involving the positions, orientations
and bounding boxes of every model and their descendants.
(b) relevant abstract events, by checking for specific contacts
from the physics engine. Cognitive psychologists [3] propose
models of actions that are specified in terms of force-dynamic
states and events which are distinctive in the perceptual state.
For instance, we detect a grasping event if an object is
in contact with the fingers. Other possible detected events
are particles leaving containers / falling off tools. We have
visualized using timelines the specific events of a successful
pancake and pizza making scenario in Figure 3.

After the episodes are stored in the knowledge base, the
recorded data will be available in a format that robots can
understand. A symbolic layer is created on the abstract
concepts and the low-level data, connecting the two types
in a seamless way. Thus, allowing robots to perform logical
inferences without altering the original data structure. The
technique is introduced in more detail in the following
section.

ITII. REPRESENTATION OF THE EPISODES

The virtual environments were set up using the robotics
simulator Gazebo [4]. The user interaction with the virtual
world has been done by mapping the users’ hand positions
and orientations onto a simulated robotic hand. For hand
tracking we used a motion sensing game controller, Razer
Hydra, offering a precision of up to Imm and ldeg. In
our previous work [5] we have showed that the collected
data from the simulation, if set up properly, can be realistic

Fig. 3: (a) Pancake and (b) pizza making relevant events

enough to be applied in real life scenarios.

The representation of the recorded episodes relies on the
action ontology of the robot knowledge processing system
KNOWROB[1], which provides structures to represent ac-
tions, their spatial and temporal context, including events,
objects, maps and robot components. It is implemented using
PROLOG and can load knowledge stored in the Web Ontology
Language OWL [6].

As introduced before, the processing module returns (a)
the low-level data from the physics engine (stored in a
large-volume database) and (b) the abstract events (stored
in separate files using the aforementioned OWL statements).
We use MongoDB! for storing the low-level data, each
of its database represents different recorded scenarios (e.g.
pancake / pizza making). These further consist of collections,
representing the executed episodes. Following, a record in
a collection is depicted by a document (JSON?-style data
structure composed of field-and-value pairs), which stores all
the relevant data for a given timestamp from the simulation

"http://www.mongodb.org/
Zhttp://json.org/

episode. The recorded abstract events consist of instances
of actions, events and assertions about the task context. For
example the concept of grasping a bottle can be described
as a subclass of GraspingSomething with the restriction that
the objectActedOn has to be an instance of a Bottle. Each
event instance also includes a startTime and an endTime, and
using the systems built in methods we can reason about the
time intervals using Allen’s interval algebra [7].

To integrate a seamless communication between the ab-
stract events, loaded in the knowledge base, and the sepa-
rately stored raw data, a special feature of KNOWROB is
used, a so called “virtual knowledge base”. Conceptually
and from the point of view of the queries, the low-level data
appears as the rest of the stored information in the knowledge
base. However, instead of storing such a large amount of raw
information in a symbolic form, it is accessed only when
requested, at query time. The advantages brought on by this
approach are: the raw data does not need to be loaded in
the knowledge base, hence the queries will be significantly
faster, and the possibility and store the data using optimized
databases, and process only the data that is required for the

query.
IV. EXPERIMENTS

Having multiple episodes with various results the robot
might need to narrow down its search to episodes where
specific events have occurred. In this section we introduce
several example reasoning queries on the two recorded
experiments: A. Pancake making and B. Pizza making.

Below we present PROLOG queries for loading the
recorded abstract events, in form of OWL files, and to
connect to the low-level database. We then include general
predicates used for reasoning on the two experiments (check-
ing if specific events occurred, objects acted on, contacts
between objects, etc.):

% load experiments into the knowledge base
?7— load_experiments(’path_to_owl_files’).

% connect to the raw database
?7— connect_to_db (’db_name’).

% get events which occured in the experiments

occurs (Eplnst, Eventlnst, Start, End) :—
rdf_has (EplInst, knowrob: subAction’, Eventlnst),
rdf_has(EventInst, knowrob:’startTime’, Start),
rdf_has (Eventlnst , knowrob:’endTime’, End).

% get a given event type

event_type(EventInst, EventType) :—
rdf_has (EventInst, rdf:type, EventType).

% check object acted on

acted_on(EventInst, ObjActedOnType) :—
rdf_has(EventInst, knowrob:’objectActedOn’,

ObjActOnlInst),

rdf_has (ObjActOnlInst, rdf:type, ObjActedOnType).

% check particle type

particle_type (Eventlnst, ParticleType) :—

rdf_has (EventInst , knowrob:’ particleType’, Part),
rdf_has (Part, rdf:type, ParticleType).

% check objects in contact

in_contact (Eventlnst, Ol1Type, O2Type) :—
rdf_has (Eventlnst, knowrob_sim: inContact’, Ol),

rdf_has(EventInst, knowrob_sim:’inContact’, O2),

Ol \== 02,
rdf_has(Ol, rdf:type, OIlType),
rdf_has (02, rdf:type, O2Type).

% check that Obj 1 is only in contact with Obj 2
only_in_contact(EventInst, OlType, O2Type) :—
findall (., in_contact(EventInst, OIType, _),
AllCont),
length (AllCont, Len), Len == 1,
[Head| -] = AllCont,
rdf_equal (Head, O2Type).

In the following we present some specific query examples
for each experiment.

A. Pancake Making Scenario

In the following we present PROLOG rules checking if the
pancake was successfully created and its quality (roundness).
The rules start by verifying that the mondamin (batter) bottle
has been grasped, afterwards a particle translation event has
occurred (pouring the batter), and after the pouring all the
particles landed on the oven surface (no spills). Afterwards
the spatula should be grasped, followed by a sliding under
the pancake event and a successful flip.

% grasp mondamin bottle

grasp.mondamin (EplInst, Eventlnst, Start, End) :—
% get events which occurred in the experiments
occurs (EplInst, EventInst, Start, End),
% check for grasping events
event_type (EventInst, knowrob: GraspingSomething’),
% check object acted on
acted_on (EventInst, knowrob: Mondamin’).

% particle translation event
particle_transl (EpInst, EventInst, Start, End) :—
% get events which occurred in the experiments
occurs (EpInst, EventInst, Start, End),
% check for particle translation
event_type (Eventlnst ,
knowrob_sim:’ ParticleTranslation’).

% liquid is only in contact with the oven

liquid_only_on_oven (EplInst, EventInst, Start, End) :—
% get events which occurred in the experiments
occurs (EpInst, EventInst, Start, End),

% check for touching situation
event_type (Eventlnst ,
knowrob_sim:’ TouchingSituation’),
% check obj 1 is only in contact with obj 2
only_in_contact(EventInst,
knowrob:’LiquidTangibleThing *,
knowrob: *PancakeMaker’).

% grasp spatula

grasp_spatula (EpInst, EventInst, Start, End) :—
% get events which occurred in the experiments
occurs (EpInst, EventInst, Start, End),
% check for grasping events
event_type (Eventlnst, knowrob:’ GraspingSomething’),
% check object acted on
acted_on(EventInst, knowrob:’Spatula’).

% slide under with the spatula
slide_under (EpInst, Eventlnst, Start, End) :—
% get events which occurred in the experiments
occurs (EpInst, EventInst, Start, End),
% check for touching situation
event_type (Eventlnst ,
knowrob_sim:’ TouchingSituation’),
% check objects in contact
in_contact (EventInst, knowrob:’Spatula’,
knowrob: *PancakeMaker’).

% check if the given model has been flipped
check_model_flip (EpInst, Model, Start, End, Flip) :—
% initialize the ”virtual knowledge base” iface
mongo_sim_interface (MongoSim),
get_raw_coll_name (EplInst, CollName),
set_coll (CollName),
call to the Java function
jpl-call (MongoSim, ’CheckModelFlip’,
[Start, End, Model], Flip).

The last predicate check_model flip checks if the pancake
has been flipped using the before mentioned “virtual knowl-
edge base”. This initializes a special query interface which

allows the raw data to be included in the PROLOG query.
The predicate calls a Java method, CheckModelFlip, using

the Java Prolog Interface’ (JPL) which checks if at the two
given timestamps the pancake particles have opposite normal
vectors of their corresponding planes (flip occured).

Between the queries the events need to be verified that they
happen at the right time and in the right order. For example
the particle translation (pouring) event should happen while
the bottle is being grasped. Otherwise it might be that the
bottle has been knocked over and the batter has been spilled.
Here are some examples of the queries:

‘7-n.particle transl happened during the container grasp
comp_duringl(ParticleTranslEvInst , GraspMondaminEvInst),

%container grasping overlaps the liquid contacts
comp_overlapsI (GraspMondaminEvInst, LiquidContactEvInst),

%container grasp happened before the spatula grasp
comp_beforel (GraspMondaminEvInst, GraspSpatulaEvInst),

Using the aforementioned predicates we will get access
to the episode instances where the pancake was success-
fully created. The robot could then query for its specifi-
cally required information (trajectories, poses) from the raw
database. In Figure 4 we have chosen to display an example
of accessing data of such a successful episode. We visualize
the spatula head trajectory (green-blue arrows - representing
the normal vector of the spatula head) while sliding under
the pancake and flipping it. We also queried for the pancake
particles positions (red spheres) during flipping, and for
visualization purposes we increased the visualization step to
around 100ms.

Fig. 4: Spatula and pancake trajectories during flipping

In order to find out the quality of the pancakes we added
a predicate which checks if the poured batter ended up in a
round shape:

% return the roundness of the pancake [0 — 1]
get_pancake_roundness (Eplnst, Model, Ts, Roundness) :—
mongo._sim_interface (MongoSim) ,
get_raw_coll_name (EplInst, CollName),
set_coll (CollName),
jpl-call (MongoSim, ’GetPancakeRoundness’,
[Ts, Model], Roundness).

For this, at the end of the pouring event we query the
database for the position of each pancake particle. The shape
is then evaluated using Principal Component Analysis (PCA)

3http://www.swi-prolog.org/packages/jpl/

from Weka [8]. This is done by computing the covariance
matrix of the particles’ 3D points and performing the eigen
decomposition of the matrix. This returns 3 eigen value-
vector pairs. The smallest eigenvalue is going to be the
thickness of the pancake and its corresponding vector is
the normal to the pancake surface. The following two eigen
values represent the variance of the pancake, in the other
two dimensions, along their corresponding vectors. The ratio
of these two values, the larger one being the denominator,
gives a measure of the roundness of the data. A value close
to O represent a highly elliptical form, and values close to 1
approach the shape of a circle.

In order to have more variance in our experiments, at
one point we asked the users to try to make long shaped
pancakes when pouring. In Figure 5 we have visualized
various queried shapes of pancakes from our episodes. In the
first line we can see the pancakes with roundness between
0—0.25, in the middle row between 0.25 — 0.6, we can notice
that the shapes already start to be usable. In the final row we
added pancakes with the shape close to 1. We also visualized
the pouring trajectory of the bottleneck, green-blue arrows
pointing towards the outside of the bottle. We can notice that
for the long shaped pancakes the trajectory is varying in the
XY plane (in the pictures the X axis is pointing forward,
Y to the left, and Z being the height). We can also notice
that height variance is not a very important factor for the
roundness when pouring the batter. This can be seen in the
bottom right picture, where we have a round pancake event
though the bottle was moving in the Z axis.

0.057 0.139 0.232
—~— 1 -
e & s
e
0.38\ 04m2 — = —
. ?
- - =
0.94 0964 ~looss —]
’) =g
Nt N/

Fig. 5: Pancake roundness after pouring using PCA

In the following Figure 6 we decomposed the pouring
trajectories for 30 episodes (in order not to clutter the
visualization), querying for 10 roundness values between
[0 —0.25] - Red, 10 between [0.25 —0.6] - Blue and 10

between [0.6 — 1] - Green. We can notice that the red
trajectories can drift away to up 10-15 cm from their starting
points, while the others stay relatively constant.

This information can be very beneficial if the robot is
specifically asked to pour a round pancake. It can reason
from the episodes with round pancakes and observe that the
bottle top should not be moving while tilting.

0.20
015
0.10
0.05
0.00
—-0.05
—-0.10
-0.15
—0.20

% [m]

0.20
015
0.10
0.05
0.00
—=0.05
—0.10
-0.15
—-0.20

y [m]

0.20
0.15
0.10
0.05
0.00 '@—-’
N —0.05

-0.10
—0.15

-0.20
0

[m]

ts [s]

Fig. 6: Bottle pouring trajectory for pancakes with
roundness: [0—0.25] - Red, [0.25 —0.6] - Blue, [0.6—1] -
Green

B. Pizza Making Scenario

For the pizza scenario the user was presented with a
flattened pizza dough, a container with pizza sauce, and two
bowls of toppings: cheese and champignon. A correct pizza
making scenario would include pouring the sauce on the
dough, without spilling, spreading the sauce on the dough,
again without spilling, and with the use of the spoon to
scatter toppings over the pizza. In the following we will
introduce the predicates used for recognizing a correct pizza
making action. Most of the predicates are re-used from the
previous scenario, for this reason we will only write their
declarations.

% grasp the container with the sauce
grasp_cup (EpInst, EvInst, Start, End) :—

% particle translation from container
pour_sauce (EpInst, EvInst, Start, End) :—

% sauce is only in contact
sauce_contact_overl (

with the pizza

EplInst, EvInst, OverlInst, Start, End) :—
% get events which occurred in the experiments
occurs (EpInst, EvInst, Start, End),

% check for touching situation
event_type (EvInst, knowrob_sim:’TouchingSituation’),
% container grasping overlaps the sauce contacts ev
comp_overlapsI(OverlInst, EvInst),
% check that Objl is only in contact with Obj2
only_in_contact (EvInst, knowrob:’Sauce’,

knowrob: ' Pizza’).

% grasp tool
grasp_spoon (EpInst, EvInst, Start, End) :—
% topping particles leaving their bowl

topping_transl (Eplnst, EvInst, DuringEvInst) :—
% get events which occurred in the experiments
occurs (EpInst, Evlnst, _, _),

% check for particle translation

event_type (EvInst,
knowrob_sim:’ParticleTranslation’),

% transl happened while topping on the spoon

comp_duringI (EvInst, DuringEvInst).

% check for the whole add topping event
add_topping (EpInst, EvInst, DuringEvInst,
% get events which occurred in
occurs (EpInst, EvInst, _, _),
% check for touching situation
event_type (EvInst, knowrob_sim:’TouchingSituation’),
% topping is in contact with the tool
in_contact (EvInst, Topping, knowrob:’Spoon’),
% topping manipulation happened during tool grasp
comp_duringl(EvInst, DuringEvInst),
% during topping scatter ONE topping-_transl
findall (TranslInst, topping_transl(

Topping) :—
the experiments

occured

EplInst, TranslInst, EvInst), AllTopTranslInst),
% check the size for strictly one
length (AllTopTranslInst, Len), Len == 1.

% get a list of all the topping events
add_toppings_during (
Eplnst, DuringEvInst, Topping, AllTopEvInst) :—
% check for all topping events of the given type
findall (AddToppingEvInst,
add_topping (Eplnst ,
AddToppingEvInst ,
AllTopEvInst),
% check that at least once topping has been added
length (AllTopEvInst, AllToppingLength),
AllToppingLength > 0.

DuringEvInst, Topping),

The above predicates can recognize a successful pizza
making task. We make sure no sauce particles are poured
next to the pizza, or spread off the pizza. The add toppings
events are more general since the user can choose the order
on how to add them, might even need multiple runs to get
the right amount out. Hence, the events are all stored in
an ‘add topping event® list. Further we check for spreading
(smear) sauce event, this should happen before adding the
first topping, and there might be multiple contact events
between the spoon head and the pizza. So we take the
smearing event as the start of the first contact, and the end
of the last one, all before adding any toppings:

% pizza contact when smearing sauce

smear_pizza_contact (EpInst, EvInst, BeforeEvInst) :—
% get events which occurred in the experiments
occurs (EpInst, EvInst, _, _),
% check for touching situation
event_type (EvInst, knowrob_sim:’ TouchingSituation’),
% check objects in contact
in_contact (EvInst, knowrob:’Spoon’, knowrob:’'Pizza’),
% contact occurred before the add toppings
comp_beforel (EvIinst, BeforeEvInst).

% smear sauce happens before add toppings
smear_sauce_before (Eplnst, BeforeEvInst,
% allspoon—pizza contacts
findall (PizzaContactInst ,
smear_pizza_contact (

Start , End) :—
before add topping

Eplnst, PizzaContactlnst, BeforeEvInst),
AllSmearPizzaContacts),
% get the first and last event from the list

first_last_from _list (
AllSmearPizzaContacts , FirstEv ,
% get the start from the first
occurs (EpInst, FirstEv, Start, _),
% get the end from the last event
occurs (EpInst, LastEv, _, End).

LastEv),
event

In Figure 7 we have visualized the spreading of the pizza
sauce from a successful episode. Blue spheres represent the
sauce particles poured on the dough and red the resulting
particles positions after spreading them with the spoon. The
arrow trajectory represents the spoon head movements while
spreading the sauce.

V. RELATED WORK

In [9] the authors present a memory system for cognitive
robots. While executing tasks with known intentions, the

Fig. 7: Spreading the sauce on the pizza, blue particles
represent the initial poured position and red after spreading

system stores information about probable failures and fre-
quent pitfalls with the scope of making improvements when
executing identical or similar tasks in the future. They are
storing in a knowledge base two streams of events, one being
high level symbolic hierarchical task structure of executed
plans. And the other low level sensor data stored indirectly
in the knowledge base. The system is similar to the one
presented in this article, but instead of storing memories from
past execution of the robot, we get human task knowledge
by letting them execute tasks in a virtual environment.

In [10] a reasoning system about commonsense knowledge
and naive physics is presented in the context of everyday
activities. The authors are using to PROLOG to assert initial
conditions to given scenarios and using a physics-based
simulator they get temporal projections about parameterized
robot control programs. Various experiments were conducted
were formal parameters of robot control programs were se-
lected from various ranges. Their results were further evalu-
ated with respect to their outcome. The presented framework
uses a simulator as well to receive various knowledge on the
effects of actions, however in order to receive the required
parameters for the control program they need to run multiple
simulations which can be a slow process. In comparison we
have the knowledge base already build, and if the information
is available, then it is quickly accessed.

The interactive cooking simulator [11] is aimed for un-
derstanding the various stages of cooking (e.g. temperature
changes, protein denaturation, burning process). The sim-
ulator can visually express the various states of cooking.
Their proposed simulation speed is fast enough to enable
interactive cooking. In our simulation the effects of cooking
are ignored, since we aimed more in the movements required
to complete a task. However, information about the cooking
stages can be of great help for learning various other param-
eters from humans.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a reasoning system for cognitive
agents acting in the context of every day scenarios with the

purpose of mining commonsense and naive physics knowl-
edge. We have extended a knowledge representation and
reasoning system with a new knowledge source, generated
by humans executing various tasks in virtual scenarios. We
have used two different cooking scenarios as experiments for
collecting data and testing examples. We have introduced
various PROLOG queries as examples to reason on the
introduced knowledge type. All the experiments and the
presented reasoning queries are available on the OPENEASE
[12] website®.

For future work we plan to overcome the numerous tweaks
required to simulate liquids/soft objects when using only a
rigid body physics engine. We will looking into various game
engines that supports particle based simulation out of the
box. This can greatly improve the quality of a simulation,
yielding data more close to the reality, and reduce the time
required to set up new scenarios. The event detection can be
extended to support more specific events such as: supported
by, inside of, etc. By testing the framework on different
scenarios we can look into how to generalize the predicates
even further. Having Weka integrated we can also test various
machine learning algorithms on the collected data, which the
robot can use during execution.

REFERENCES

[1] M. Tenorth and M. Beetz, “KnowRob — A Knowledge Processing
Infrastructure for Cognition-enabled Robots,” Int. Journal of Robotics
Research, vol. 32, no. 5, pp. 566 — 590, April 2013.

[2] L. von Ahn and L. Dabbish, “Designing games with a purpose,”
Commun. ACM, vol. 51, no. 8, pp. 58-67, Aug. 2008. [Online].
Available: http://doi.acm.org/10.1145/1378704.1378719

[3] R.S. Johansson and J. R. Flanagan, “Coding and use of tactile signals
from the fingertips in object manipulation tasks,” Nature Reviews
Neuroscience, vol. 10, no. 5, pp. 345-359, 2009.

[4] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” In: Proc. of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp.
2149-2154, 2004.

[5] A.Haidu, D. Kohlsdorf, and M. Beetz, “Learning action failure models
from interactive physics-based simulations,” in Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015.

[6] W3C, OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax. World Wide Web Consortium, 2009,
http://www.w3.0rg/TR/2009/REC-owl2-syntax-20091027.

[71 J. F. Allen, “Maintaining knowledge about temporal intervals,”
Commun. ACM, vol. 26, no. 11, pp. 832-843, Nov. 1983. [Online].
Available: http://doi.acm.org/10.1145/182.358434

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: An update,”
SIGKDD Explor. Newsl., pp. 10-18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[9] J. Winkler, M. Tenorth, A. K. Bozcuoglu, and M. Beetz, “CRAMm
— memories for robots performing everyday manipulation activities,”
Advances in Cognitive Systems, vol. 3, pp. 47-66, 2014.

[10] L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot
manipulation actions using simulation-based projections,” Artificial
Intelligence, pp. —, 2015.

[11] F. Kato and S. Hasegawa, “Interactive cooking simulator: Showing
food ingredients appearance changes in frying pan cooking -, in
Proceedings of the 5th International Workshop on Multimedia for
Cooking and Eating Activities, ser. CEA *13, 2013.

[12] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE — a knowledge
processing service for robots and robotics/ai researchers,” in IEEE
International Conference on Robotics and Automation (ICRA), Seattle,
Washington, USA, 2015.

“http://www.open-ease.org/

http://doi.acm.org/10.1145/1378704.1378719
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/1656274.1656278

	INTRODUCTION
	OVERVIEW
	REPRESENTATION OF THE EPISODES
	EXPERIMENTS
	Pancake Making Scenario
	Pizza Making Scenario

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	References

