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Abstract— For robotic agents to perform manipulation tasks
in human environments at a human level or higher, they need
to be able to relate the physical effects of their actions to how
they are executing them; small variations in execution can have
very different consequences. This paper proposes a framework
for acquiring and applying action knowledge from naive user
demonstrations in an interactive simulation environment un-
der varying conditions. The framework combines a flexible
constraint-based motion control approach with games-with-a-
purpose-based learning using Random Forest Regression. The
acquired action models are able to produce context-sensitive
constraint-based motion descriptions to perform the learned
action. A pouring experiment is conducted to test the feasibility
of the suggested approach and shows the learned system can
perform comparable to its human demonstrators.

I. INTRODUCTION

An autonomous service robot has to perform manipula-
tions with requirements that go beyond contact-free point-to-
point motions. Tiny variations in how a motion is executed in
a certain context can mean the difference between success
and failure. For instance, consider making breakfast: how
easy is it to accidentally destroy a sunny side up egg when
removing it from the pan, or to spill milk while pouring
from a full pack? To perform such actions robustly, the
control program requires models that relate motions executed
in a particular task context to the resulting effects, and vice
versa. For example, they describe how transporting a pancake
from pan to plate depends on the geometric and dynamic
properties of objects, their positions in the environment, etc.
Such models enable robots to adapt their motion execution
to achieve the desired effects.

Equipping robots with this kind of models is very attractive
because it would enable developers to program their robots at
a higher level of abstraction. Instead of specifying motion tra-
jectories, they can instruct robots at the level of sequences of
object property changes. The control program would context-
sensitively perform the right motions with the available tools,
self-selecting the appropriate motion parameters. In other
words, acquiring action models that inform robots how to
perform a motion to achieve certain effects is a key milestone
on our path towards autonomous service robots.

Unfortunately, the research on design and acquisition of
action knowledge relating effects and robot motion is still
in its early stages. Despite great progress in the fields of
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task planning [1], [2], knowledge representation [3], [4] and
learning by demonstration [5] for robots, our community
lacks quantitative and qualitative representations of object
property changes such as spilled milk or misshaped pancakes
that can be reasoned about in terms of how they were
achieved or how they can be undone. Other components, such
as reliable, context-sensitive perception of effects in a variety
of (household) environments, are also needed. However, even
if we did have optimal knowledge representation for and
perception of motion effects, we would not know how to use
these modules to context-sensitively execute the appropriate
robot movements.

In prior work we proposed to use physics simulation
environments as a tool for acquiring knowledge about object
manipulation tasks. There are two major benefits to this
approach: (1) complete perception: the entire world state
is accessible and (2) scalability: human demonstrations can
be crowd-sourced online and large amounts of autonomous
projections in different scenario’s can be generated.

In this paper, we present a framework for acquiring robotic
action knowledge from user demonstrations in an interactive
simulation environment with realistic physics. We present
an experiment in which we learn an action model that
predicts the correct constraint-based movement descriptions
for pouring pancake batter given certain environment prop-
erties. Because the models specify the nature and existence
of the relationship between an environment variable and
motion parameters, it can be used to derive other forms of
(generalized) knowledge as well.

Our contributions beyond [6]–[8] are as follows. First,
we acquire action models that context-sensitively select
constraint-based motion descriptions. These descriptions can
be used for advanced whole-body motion control of robots
[9], and have been incorporated into formal robot knowledge
bases [10]. Kunze et al. [6] acquired action models from
simulation, but the underlying motion representations and
controllers were less sophisticated. Their system focused on
predicting (symbolic) effects rather than generating action
and did not attempt to learn the models from humans. Kunze
et al. [7] and Haidu et al. [8] used demonstrations from users
to learn action knowledge, but did not apply this knowledge
to performing actions. Furthermore, we demonstrate the fea-
sibility of acquiring these action models from demonstrations
of naive users, i.e. users unaware of neither the learning
technique employed nor the controllers used for evaluation.



Fig. 1. System overview

II. OVERVIEW

An overview of the system is depicted in Figure 1. Naive
demonstrators perform a task in a simulator under various
circumstances. The complete simulation data is recorded.
The system segments the demonstrations using events and
event intervals. Environment variables and poses are ex-
tracted at the key timepoints as defined by the events
and are used to train a set of models that predict motion
constraints based on environment variables. The models are
automatically evaluated to establish whether the observed
variation in the environment affects the motion constraints,
which constraints are affected, and how. Presumably human
adults are able to perform an action reliably using various
objects in various conditions because they possess a model
relating motions to action effects. By studying not only the
motions, but also how changes in these motions relate to
changes in the environment and action effects, our system
attempts to derive the relevant implicit knowledge people
have about the task and the world. When the system is tasked
with performing the learned action, it uses the observed
environment variables and learned models to instantiate the
controllers appropriately.

The components of system are described in more detail in
Section III and the instantiation thereof for the experiment
is described in Section IV.

III. METHODOLOGY

Before explaining our methodology, we briefly introduce
the mathematical notations used throughout this paper.

• Roman lowercase letters (a) denote scalars, bold low-
ercase letters (b) denote column vectors, and bold
uppercase letters (C) denote matrices.

• Subscripts denote indexes and are used to point to
elements of corresponding vectors and matrices. E.g.,
ai is the i-th element of vector a, while Ai,j is the
element in i-th row and j-th column of A.

• The lowercase letters f and g with arguments specified
in trailing brakets denote functions; roman subscript
letters are used to denote different functions, e.g. fl(. . . )

• em denotes a column vector containing only 1 as
elements with dimensionality m, e.g. e2 = [1, 1]T

• W
A T denotes the pose of coordinate frame A expressed
with respect to the coordinate frame W , represented as
a homogeneous transformation matrix; W

A R denotes the
corresponding rotation, and W

A p denotes the correspond-
ing translation of A with respect to W

A. Simulation environment and recording

The interactive simulations were developed using Gazebo
Simulator [11], a robotic simulator with realistic physics
engine. The user interacts with the simulated environment
through the motion sensing game controller Razer Hydra,
which calculates its position using a weak magnetic field to
a precision of up to 1mm and 1deg. The recorded movements
are projected onto a simulated robotic hand. The joystick on
the controller is used to close and open the hand for grasping.
A game controller was preferred because of the ease of use
and availability to the general public. For more details on
the simulation, see [12].

The physics data produced by the simulator are recorded at
1000Hz and stored using MongoDB. This data is a complete
representation of what happened during the demonstration.

The recorded demonstrations are then segmented and
processed to provide an appropriate dataset. There are many
approaches for segmenting observed actions, such as looking
at the (in)variability of certain parameters over trials and
time, cluster trajectory points, and recognition based on
previously defined prototypes [13]–[17]. Here we chose to
use event detectors to segment the action into subactions.
Aksoy et al. [18] demonstrate that using only a couple
key events (changes in object relationships), actions can be
identified reliably. Such an approach allows actions (and thus
demonstrations thereof) to be represented compactly. The
used event detectors indicate the intervals during with their
respective events have occurred. A small set of detectors
for basic events such as contact and grasping can already
describe a large set of actions. Action recognition and
segmentation is achieved by matching event intervals to the
expected pattern.



B. Motion Control Framework

The framework for constraint-based motion control we
employ is a simplification of [9]. For the sake of readability
and completeness, we describe our entire framework rather
than listing the differences. The framework allows one
to specify motions as a composition of various types of
constraints. Constraints can easily be added to or removed
from the motion specification and allow for an efficient
specification of complex tasks.

Fig. 2. Motion frame for a pouring task

A sample motion specification from the domain of pancake
making is given in Figure 2. It shows a task description
composed of three motionphases, each corresponding to a
controller which tries to satisfy a particular set of kinematic
constraints. Due to space restrictions not all constraints are
listed. Here the object definitions pancakemaker and cup are
used, but the framework is applicable to different domains.

Each of the motion controllers can be viewed as a math-
ematical function

ċdes = f(o), (1)

with o denoting a vector of observable variables o ∈ Rn,
and ċdes representing the desired instantaneous change of a
vector of controllable variables c ∈ Rm. We assume that
c ⊆ o holds. f(o) is called in every control cycle.

At the heart of f(o) lies a minimization problem which
is constructed from two types of constraints: Controllable
constraints bounding the optimization vector s, and task
constraints limiting the desired instantaneous change of a
vector of task functions e = fe(o), with e ∈ Rp.

Using a vector of slack variables ε ∈ Rp, related to the p
task constraints, we designed s as

s = [ċTdes, ε
T ]T . (2)

Each slack variable in ε is associated with one task con-
straint. The solver of the underlying minimization problem
uses ċdes to move the actual robot, while it employs ε to
violate task constraints which are uncovertible or too costly
to obey. The solver cannot violate controllable constraints.

The minimization problem solved in f(o) is then:

min
s

sTHs (3a)

s.t. lA < As < uA (3b)
l < s < u (3c)

Equation (3a) defines the cost function of the problem,
while equations (3b) and (3c) define the task and control-
lable constraints, respectively. H denotes a square diagonal
weighting matrix modulating the cost function chosen as

H = diag(w), w = [fcw(o)
T , ftw(o)

T ]T . (4)

fcw(o) ∈ Rm and ftw(o) ∈ Rp compute the controllable
weights and task weights in every control cycle, respectively.
We assume that ∀i : wi ≥ 0. Informally speaking, the higher
a controllable weight the more costly it is to employ the
corresponding controllable variable, and the higher a task
weight the more costly it is to use its slack variable.

The boundaries on the desired instantaneous change of the
task functions are calculated in every control cycle as:

lA = flA(o), uA = fuA(o). (5)

The relationship between the optimization vector s and the
task constraints is analytically calculated in every iteration
using the task functions fe(o):

A =
(
J Ip×p

)
, J ∈ Rp×m, Ji,j =

∂ei(o)

∂cj
(6)

Finally, the boundaries on s are set in every control cycle
as the computed values fl(o) and fu(o) for ċdes, and as
fixed values for ε:

l = [fl(o)
T ,−∞eTp ]

T u = [fu(o)
T ,+∞eTp ]

T (7)

It follows that all slack variables ε are effectively unbounded.
Hence, the slack variables allow the solver of the minimiza-
tion problem to completely ignore the desired change of any
task constraint if it is uncovertible or too costly. On the other
hand, in case an underconstrained minimization problem is
given, i.e. there are redundant controllable variables, the
solver calculates a solution with minimal costs.

In summary, to specify a controller in our framework
one has to define o and c, and select compatible functions
fcw(o), ftw(o), flA(o), fuA(o), fl(o), fu(o), and fe(o).

C. Learning Framework

To instantiate the controller, we designed a simple learning
module that uses Random Forest Regression models [19]
to predict the task constraints the controller must satisfy
to execute a given action successfully given the observed
environment variables.

Parameters are extracted from the recorded interactive
simulations at key timepoints using event detectors to form
a training dataset D of N demonstrations. D consists of
{xi}Ni=1 environment variables and {gi}Ni=1 motion goal
variables. It is assumed that the task-specific constraints for
the motion controller to replicate the task can be derived
from these motion goal variables.



The learned models should approximate a function g =
f(x) that describes the relation between the environment
variables x and the motion goal variables for the task g, as
an approximation of the knowledge that the demonstrators
possess of this relationship.

Regression forests use an ensemble of O regression trees,
where each regression tree is constructed using a bootstrap
sample from D, a randomly drawn set with replacement
equal to N , and a random subset of all possible features k.
At each node the best split for the tree is determined from
this subset of features.

Note that the exact choice of the number of trees O is
generally considered not crucial as long as it is large enough.
I.e. in principle the larger the number of trees the better, but
the improvement in results becomes limited beyond a certain
number and may not outweigh the additional computational
cost [20], [21]. The appropriate amount of trees is difficult
to estimate and depends on the characteristics of the training
set such as the number of training samples available.

By averaging over these trees with random training subset
and random feature subset, the forest as a whole is able to
reliably model the relationship between g and x. The trained
model can then be used to predict g for novel x.

It is to be expected that not all gi will depend heavily on
x, as certain aspects of a task can be relatively invariant over
different contexts/outside factors. Therefore, the learning
module determines for each constraint variable whether it can
be reliably predicted based on the training results. It does so
using an estimation of the variance explained by the model
for that variable. If a given threshold is not exceeded, a static
range based on D is used instead of the value predicted by
the model.

IV. EVALUATION

A. Experiment setup

A pouring task is considered to illustrate the validity of
the proposed approach. Six naive participants were asked to
pour pancake mix onto a pancakemaker in the simulation
environment. The fullness of the containers was varied in 6
conditions: 20, 36, 52, 68, 84 or 100 percent of the container
volume was filled with liquid. Liquid was simulated using
small spheres. The position of the cup was varied randomly
(while still being reachable and on the table). The partic-
ipants performed one practice block and six experimental
blocks, with each block consisting of 5 pouring repetitions.
Subjects were instructed to do an additional demonstration
for each demonstration of which they thought it might
have failed, to be certain that there would be enough good
demonstrations in the set. Demonstrations may fail for a
number of reasons; the subject might spill some liquid or
there may be a technical problem with the simulator. A Latin
square design was used to counterbalance condition order
[22]. while obtaining a fair sample of demonstrations.

The simulation is initialized with a pancakemaker and a
cup on the table. The user acts in that environment using
the motion sensing game controller. Every participant was
shown the same instruction sheet informing them of the task,

the number of blocks, and demonstrations per block. They
were not informed about the purpose of the experiment or
the changing conditions. The participant had to grasp the cup
using the virtual hand, move it above the pancakemaker, tilt
it so that enough liquid for a small pancake (ca. 75 spheres,
equivalent to 54.75ml) would flow out and then put the cup
back on the table and release it. They were given one practice
block of 5 repetitions or more, until they felt comfortable
performing the task in the simulator.

B. Event segmentation and variable extraction

The demonstration data contains the pose and contacts
of each object at each timepoint. At each time point, the
detectors indicate whether their event has occurred. These
event points are combined to form event intervals. The
pouring demonstrations were segmented using three detec-
tors, detecting lifts (object is not supported by any surface),
rotation of the controlled object, and particles leaving the
container. We expected pouring actions to follow the pattern
of liftstarttime < rotationstarttime < leavingstarttime <
leavingendtime < rotationendtime < liftstarttime. There
could be several rotation intervals in a pouring action, but
there should be one rotation starting around the beginning of
“leaving” and one ending around the end of “leaving”.

We assumed a fixed structure for the pouring task as a prior
for learning the action models, consisting of three motion-
phases: move container above pancakemaker, tilt container
down, and tilt container back. The first phase was assumed to
span the interval during which the container was lifted until
pancakemix started leaving the container. The second phase
spanned the time during which the pancakemix was leaving
the container, and the third phase from when the mix stopped
leaving the container until the end of the lift. The associated
constraint variables were extracted from these time intervals,
resulting in a light representation of every demonstration that
could be used by the learning module.

C. Modelling controllers for pouring motions

The structure of the controllers for the pouring motions
were designed to match the same three phases as described
above. Each phase was formalized within the motion control
framework (Section III-B).

In our simulation there were three relevant reference
frames: The world frame, a frame attached to the bottom
center of the pouring container (called cup), and a frame at-
tached to the top center of the pancakemaker (called maker).
In subsequent notations we abbreviate all three frames to
their uppercase first letter. Please note that both relevant
objects are rotational symmetric, and that both C and M are
positioned with their origins on and their z-axes aligned with
the symmetry axis of their respective objects.

We parametrized observable homogeneous transforma-
tions between reference frames by a set of observable vari-
ables χ = [x, y, z, α, β, γ]T . We translated a given χ into a
transformation matrix using

T(χ) =

(
Rz(α)Ry(β)Rx(γ) [x, y, z]T

01×3 1

)
(8)



In every control cycle, we observed the homogeneous
transformation matrices W

C T = T(χcup) and W
MT =

T(χmaker), and declared the observable and controllable
variables of our pouring controllers as

o = χcup ∪ χmaker c = χcup (9)

We modelled computed the lower and upper boundaries
of the controllable constraints for all three motion phases as

fu1/2/3
(o) = [vmin1/2/3

eT3 , ωmin1/2/3
eT3 ]

T (10)

fl1/2/3(o) = [vmax1/2/3
eT3 , ωmax1/2/3

eT3 ]
T (11)

We defined three point features for control: the center
bottom point of the cup W

CB
p =W

C p, the center top point
of the maker W

MT
p =W

M p, and the center top point of the
cup W

CT
p =W

C R∗ [0, 0, 0.108]T +W
C p. Note that the pouring

container had a height of 10.8cm and a radius of 5cm.
Using three auxiliary task functions

e1(o) =
W
CB

p−W
MT

p (12)

e2(o) =
W
CT

p−W
MT

p (13)

e3(o) =
W
CT

p−W
CB

p, (14)

we defined the actual task functions for each of the three
motion phases as

fe1/3(o) = [e1(o)
T , e3(o)

T ]T , (15)

fe2(o) = [e2(o)
T , e3(o)

T ]T . (16)

The functions computing the lower and upper boundaries
of the task constraints for all three motion phases were
chosen as

flA1/2/3
(o) = glA1/2/3

− fe1/2/3(o) glA1/2/3
∈ R6 (17)

fuA1/2/3
(o) = guA1/2/3

− fe1/2/3(o) guA1/2/3
∈ R6 (18)

Finally, we used the same functions to compute to task
and controller weights for all three motion phases. Using
the constants µ = 0.001 and wt = 1 in all our evaluation
experiments we computed the weights as

fcw(o) = µe6 ftw(o) = (wt + µ)e6 (19)

We simplified the control problem by (1) disabling the
simulated gravitational force acting on the pouring container,
and (2) setting low mass values on the simulated fluid. This
makes the effect of gravity acting on the controlled container
negligible. Hence, we did not use a feedforward term to
correct for it.

D. Learning models

The training set D = {xi}Ni=1 ∪ {gi,j}
N,M
i=1,j=1 consists of

N = 211 demonstrations with M = 3 motionphases, where
xki is the k-th environment variable of demonstration i and
gli,j is the l-th motion constraint variable from motionphase
j of demonstration i. gli,j corresponds to gAj given a certain
demonstration i. A sample of the data is shown in Table I.

Each motionphase has 14 contraint parameters, which are
not all shown in the table due to space restrictions. The
parameters consist of the positions of the three control points

(WCB
p, WCT

p, WMT
p) relative to each other. The relative position

of the top of the cup (WCT
p) to the bottom (WCB

p) contains
information equivalent to the rotation of the container. Ad-
ditionally, 4 parameters encode the minimum and maximum
rotational and translational velocity during the motionphase.
Finally, one parameter describes the waiting time from the
current phase to the next.

The Random Forest Regression models are implemented
using the scikit-learn package [23]. The forest consisted of
100 trees and the maximum amount of features per tree
was set to equal K environment variables. The trees were
allowed to fully grow, since bagging methods like Random
Forest reduce overfitting and work quite well with complex
single models. The environment variables that were varied in
this experiment were the volume of the cup and the starting
position of the cup on the table.

We assume that a motion can be successful within a certain
range of motion constraints, rather than a single value. The
various demonstrations are expected to reflect this acceptable
variance in execution. The learned models produce a single
value for each component of gAj however. Therefore, for
each component of goal gAj , the Root Mean Squared Error
(rmse) was taken as a reflection of the average difference
between the estimator and the estimated value, and therefore
giving an indication of the size of the envelope around the
estimator based on our samples. The rmse of each component
was subtracted from gAj to arrive at lower bound glAj of
the constraint and added to arrive at the upper bound guAj .

Since the Random Forest Regression models uses boot-
strap samples, predictions using the samples left out can be
used to estimate generalization error. It has been repreat-
edly shown that the error estimated using this method is
quite accurate, and for regression forests appear to be even
slightly pessimistic [24], [25]. These so-called out-of-bag
estimates are used here to calculate R2, where R2 = 1 −
sum of squaresresidual

sum of squarestotal
.

The goodness of fit of the models is estimated for each
of the constraint variables using adjusted R2, where R2

adj =

1 − (1 − R2) N−1
N−K−1 with sample size N and number of

predictors K. R2
adj adjusts for the number of predictors

that are added; unlike R2, R2
adj only increases if the added

term increases the explained variance significantly. If the
R2

adj exceeds a threshold of 0.3, the predicted constraint
boundaries are used. If R2

adj falls below the threshold, it is
assumed that the motion parameter does not vary predictably
and a simple statistical measure is used. In that case glAj

is set to equal the first quartile of that variable from all
demonstrations, and guAj is set to equal the third quartile.

E. Performance evaluation

The acquired models are tested by evaluating the ability of
the system to perform the pouring action. For this assessment
the controllers perform pouring actions in simulations with
random (previously unseen) container volumes and starting
positions. The algorithm used to apply the controller to the
scenario is specified in Algorithm 1.



Initial Position
[x,y,z] (m)

Container
Volume (ml)

Simulated
Liquid (ml)

Poured
Liquid (ml)

Spilled
Liquid (ml)

phase1
max-velocity(m/s)

phase1
cup-bottom-above-maker(m) . . .

(-0.11,0.26,0.039) 863.94 109.5 66.43 0 0.5772 0.2615 . . .
(-0.091,0.39,0.039) 725.71 109.5 90.52 0 0.4924 0.2006 . . .

(0.16,0.56,0.039) 587.48 109.5 61.32 0 0.9555 0.2394 . . .
(-0.17,0.67,0.039) 449.25 109.5 70.81 0 0.8843 0.2524 . . .
(0.17,0.68,0.039) 138.23 109.5 62.78 0 0.8773 0.1559 . . .

TABLE I
EXAMPLE TRAINING DATA

Algorithm 1 Evaluation of the learned action models for
context-sensitively predicting pouring motions. We switch
between motion phases after a predicted period of conver-
gence has passed.

1: function EVALUATE(ActionModel,∆ω,∆v)
2: Sim.Init()
3: inputs ← Sim.Cup.Pose ∪ Sim.Maker.Pose ∪

Sim.Cup.F ill
4: Motions← Predict(ActionModel, inputs)
5: for m in Motions do
6: c← CreateController(m.model)
7: Buf ← {}
8: while not Converged(Buf,m.Wait,∆ω,∆v) do
9: Buf←Buf ∪ Sim.Cup.Twist

10: obs← Sim.Cup.Pose ∪ Sim.Maker.Pose
11: Sim.Cup.DesTwist← c.Compute(obs)
12: Sim.Step(1ms)
13: end while
14: end for
15: end function

16: function CONVERGED(Buf,WaitSamples,∆ω,∆v)
17: if Buf.Size < WaitSamples then
18: return False
19: end if
20: for i← Buf.Size−WaitSamples to Buf.Size do
21: t← Buf [i]
22: ωmax ← max({|max(t.rot)|} ∪ {|min(t.rot)|})
23: vmax ← max({|max(t.trans)|}∪{|min(t.trans)|})
24: if ωmax > |∆ω| or vmax > |∆v| then
25: return False
26: end if
27: end for
28: return True
29: end function

The system was tested in a learned condition and a
fixed condition. In the former, variables were predicted as
described in Section IV-D. In the latter, all constraints were
estimated from the demonstrations using the static interquar-
tile range. These two conditions are compared to the human
demonstrations to assess how well the controllers perform.
They are also compared to each other to test the hypothesis
that the model has merit over a statically defined controller.
Each condition was tested through 200 simulations.

We use the same recording and segmentation procedures
for the actions performed by our system as we used for the
human demonstrations. The following dimensions are con-
sidered important for evaluating this pouring task: whether
a pouring action was performed, whether spilling occurred,
how much was spilled, and the size of the resulting pancake.

V. RESULTS

The results are shown in Table II. A total of 211 pouring
demonstrations, of which 187 without spilling, were col-
lected during the experiment. There were approximately the
same amount of complete, non-spilling demonstrations for
each container volume condition, the number of demonstra-
tions ranging from 29 to 33.

For the Controllers (learned) condition, 196 episodes con-
tained successfully detected pouring actions, two of which
contained spillage. The amount of successful pouring actions
without spill is higher than of the human demonstrators
(97% and 88.63% respectively). Four episodes failed because
liquid left the cup after tilting back had completed, thus
mismatching the expected event pattern.

For the Controllers (fixed) condition, 176 episodes con-
tained successfully detected pouring actions, three of which
contained spillage (86.5% success). Of the 26 that did not
contain pouring, 3 had the same reason for failure as those
in the learned condition. The remaining 23 episodes did not
contain pouring because the cup was not tilted enough for
liquid to leave the cup.

The fixed controllers have an average of amount poured
that is closer to the target than the learned controllers.
This comes at the cost of not being able to do the task
appropriately when the cup is either quite full (spilling) or
quite empty (no liquid poured) however, resulting in 20 less
succesful pouring actions than the learned controllers.

Noticably, in the episodes where pancake mix was spilled,
the amount spilled by the controller (0.73ml on average)
was considerably less than the human demonstrators (9ml
on average). The demonstrators were much more accurate
in how much was poured onto the pancakemaker however,
overshooting the target amount on average by only 3.49ml.

The histograms in Figure 3 show that whereas the human
demonstrators demonstrate a nice normal curve around the
target volume, the fixed controllers display a distribution all
over the place. The learned controllers’ curve is similar to the
demonstrators’, but with a bias towards pouring too much.
There are many possible reasons why such a bias might
exist. These are likely to be specific to this action however
(for example how the motion descriptions were constructed).
Importantly, it suggests that a mechanism for monitoring and
correcting such behavior is desired in the framework.

In terms of time it took to execute the task, the humans
were considerably faster than either controllers and showed
more variance. The learned controllers were faster than the
fixed controllers and showed more variance as well.



Actor Episodes (Eps)
Overall

Eps. with
Pouring

Eps. with
Spilling

Mean Spilled
Volume for Eps.

with Spillage (ml)

Mean Poured
Volume for Eps.

with Pouring (ml)

Mean Difference
to Targeted

Volume (ml)

Mean (SD)
Task Time (sec)

Subjects 211 211 24 9.00 58.24 +3.49 7.57 (2.77)
Controllers (learned) 200 196 2 0.73 88.93 +34.19 10.15 (1.83)
Controllers (fixed) 200 176 3 0.73 60.45 +5.70 11.05 (1.38)

TABLE II
SUMMARY OF THE POURING EPISODES COLLECTED

Fig. 3. Histograms of volume poured onto the pancake maker

Motion phase Constraint variable R2
adj

Move above pancakemaker cup-top-above-bottom 0.7954
Tilt container down cup-top-above-bottom 0.8437

TABLE III
GOODNESS OF FIT FOR THE MODELS THAT EXCEEDED THE THRESHOLD.

An overview of the constraint variables whose R2
adj score

exceeded the threshold is given in Table III. The constraint
variable “cup-top-above-bottom” is the difference in z be-
tween the top and the bottom of the cup. It is therefore a
measure of tilt in the z-axis. For all phases, this variable is
the most reliably predicted from the environment variables.
This is to be expected since the largest source of variation for
the action in the current setup is the fullness of the container,
and this is expected to have a great influence on how much
the cup is tilted during lift and pouring.

VI. CONCLUSION AND DISCUSSION

In this paper, a framework for acquiring action models was
proposed that combines a flexible control framework with
a generally applicable learning framework. The system was
able to perform context-sensitive actions reliably by learning
from non-experts in a simulated environment.

[26] have a similar approach to collecting demonstrations
in simulation from non-experts using an intuitive interface to
teach robots actions in a virtual environment. They collect
information to decide which tasks to perform, whereas our
approach emphasizes the importance of learning how actions
should be performed.

Enabling non-experts to teach robots, often refered to
as Learning by Demonstration, has received considerable

attention as a way to acquire action knowledge [27]–[29].
The approach is interesting because it would enable robots
to learn (about) an enormous amount of actions at low cost.
Moreover, it can enables systems to learn important aspects
of tasks that are difficult for humans to specify explicitly or
which humans themselves might be unaware of.

By using demonstrations rather than a large set of au-
tomatically generated simulations, we are ignoring a large
proportion of the possible motion space. While taking some
“human time”, it drastically reduces the required computa-
tion time. We believe that having humans highlight a path
through the vast search space will prove a valuable strategy
for constructing a general framework for learning to perform
a wide range of everyday manipulation tasks reliably.

Two key questions that arise in LfD is what to imitate and
how. The first question addresses which features are relevant
for reproducing an action. E.g. what describes the essence of
an action? There appear to be keypoints during actions that
define the action type. Flanagan et al. [30] show that changes
in contact events are of great importance for signaling the
transition between phases of an action, a phase for example
being grasping or moving an object. This view is supported
by the findings of Aksoy et al. [18], who show that it is
possible to recognize actions based solely on the sequence of
changes in object relations. Here we used a simple version of
this framework to divide actions into phases, using physical
events to recognize and parameterize the action of interest.

The system is limited in that it does not monitor the
events online. Thus, if the cup is not tilted enough and no
pouring occurs, this is not detected until after the episode
has completed. Adapting the system such that it monitors the
ongoing process and motion phases and goals are triggered
by expected events would likely enable it to perform better.
Such a system is also desirable in order to be able to abort an
action prematurely if unexpected events happen; for example,
to stop pouring as soon as a spill is detected.

The second question addresses how the demonstrations
should be used to generate feasible trajectories for the robots
manipulators. The system presented here parametrizes the
goals of flexible controllers instead of imitating demonstrated
trajectories. Consequently, the learning module benefits from
all desirable properties engineered into the control frame-
work, e.g. motion smoothness or robustness to small dis-
turbances. The controller parametrization is done through
matching the design of the learning module to the controllers.
To do so, we have given prior knowledge in the structure
of the task functions by specifying motion phases and



variables. We intend to address this issue by for example
enabling the controller to flow from one motion phase to
another through automatically defined segments and goals
taken from the demonstrations. Here we first demonstrate the
feasibility of using such a control and learning framework
for parameterizing context-sensitive actions.

Using physics simulations as environments to acquire
action models from demonstrations is an attractive propo-
sition. The resulting well-controlled and fully observable
experiments promise to yield learning data of high quality
and relevance. On the other hand, it may be hard to obtain
accurate values for some of the necessary object parameters
for new task domains. We believe that employing default
values as best guesses will be sufficient to obtain qualitatively
correct action models which enable robots to competently but
not optimally perform and reason about new actions.

The framework can be further tested by adding more vari-
ation to the task such as changing the viscosity of the liquid,
handling containers of various shapes and openings, varying
the target size, etc. Extending the scenario to more input
variables from the environment should be straightforward.
Since the actions performed by the motion controllers are
analyzed in the same fashion as the human demonstrations,
this data can be fed back into the system to expand the
training set, with the human demonstrations as starting points
in this high-dimensional space.

In conclusion, the results show that the controller and
learner can be combined meaningfully and capture enough
general knowledge from the demonstrations to perform the
actions in other instances. Though the currently presented
framework has its limitations, it shows promising results in
learning general, context-sensitive action models.
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[14] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental
learning of full body motion primitives and their sequencing through
human motion observation,” Int. Journal of Robotics Research, vol. 31,
no. 3, pp. 330–345, Mar. 2012.

[15] G. Konidaris, S. Kuindersma, A. G. Barto, and R. A. Grupen, “Con-
structing skill trees for reinforcement learning agents from demon-
stration trajectories.” in Advances in Neural Information Processing
Systems, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, Eds., 2010, pp. 1162–1170.

[16] E. Fox, M. Hughes, E. Sudderth, and M. Jordan, “Joint modeling of
multiple related time series via the beta process with application to
motion capture segmentation,” Annals of Applied Statistics, vol. 8,
no. 3, pp. 1281–1313, 2014.

[17] D. Kulic, W. Takano, and Y. Nakamura, “Combining automated on-line
segmentation and incremental clustering for whole body motions.” in
Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE,
2008, pp. 2591–2598.

[18] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and
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